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Abstract

We present some speculations concerning quantum systems in which there is a discretiza-
tion in the values of fields and the spacetime due to the presence of a cutoff in the target
space. This can be viewed as specifying a quantum theory in which the reduced Planck con-
stant ℏ satisfies the relation 2πℏ = N with N a positive integer greater than one. Number
theoretic structures such as finite fields and schemes in characteristic p enter in a structural
way, and can be packaged in the language of arithmetic geometry.

The main idea in the proposal is to view the path integral of quantum field theory as
specifying a sum over rational morphisms between varieties. Introducing an action con-
structed from kinetic and potential energy terms then provides an algorithmic procedure for
reading off correlation functions in this setting. The broad contours of this proposal appear
to be in line with Swampland considerations since the evaluation of any characteristic p map
automatically truncates to a finite set.

When there is an additional fibration structure with a distinguished “time coordinate” we
show that the path integral formulation also comes equipped with various approximations to
the standard Hilbert space of states. One approximation reduces to what might be referred
to as the usual approximation in lattice quantum field theory, but including all of the data of
morphisms leads to additional maps and an enlarged Hilbert space of states. The associated
geometries can be interpreted as building up a physical system from quantum error correcting
codes. The partial ordering of morphisms according to the degree of local maps implements
a notion of UV versus IR modes, and a corresponding notion of entanglement across different
scales.

The underlying structure in the étale topology also leads to a notion of momentum and
winding modes for field theories in characteristic p varieties, which in some cases can be
interchanged, much as in standard T-duality. We also show how some of the structure of
scattering amplitudes based on rational functions defined on twistor space carries over to
the characteristic p setting. Some aspects of topological field theories also carry over as well.
Notions such as supersymmetry also have characteristic p analogs.

This also leads us to some physically motivated conjectures connected with this con-
struction. Using the developed formalism, we take some first steps in analyzing the geome-
try associated with quantized Fayet-Iliopolous parameters. We propose a relation between
supersymmetric indices and the Hasse-Weil Zeta function of schemes in characteristic p as
well as a characteristic p analog of geometric engineering, including a conjectural correspon-
dence between m-folds of ADE singularities with total space a Calabi-Yau variety, and gauge
theories of ADE type.



We also show how to lift these structures to the geometry of p-adic varieties, which
we use to make contact with earlier proposals for formulating physical systems over p-adic
spaces in the special case where N = pa with a taken very large. In the limit where we
demand convergence of the action in the p-adic topology, the target space is also of mixed
characteristic. If we instead demand convergence in the sum over phase factors appearing in
the path integral, convergence is enforced in the real topology, allowing us to make contact
with more “standard” notions of p-adic physics where the source of the field theory is of
mixed characteristic, but the target space is defined over the real numbers.

As potential physical applications, we point out that theories with eight real supercharges
such as those captured by Seiberg-Witten theory have an intrinsically arithmetic structure
which is closely connected with the counting of points in the corresponding arithmetic geom-
etry. We also use this framework to revisit various proposals for constructing p-adic avatars
of holography and especially the AdS/CFT correspondence. This also leads us to a notion
of quantum entanglement amongst states labelled by p-adic numbers.

The appearance of limits of operator algebras provides a physically motivated extension
of these considerations to the formulation of physical theories on p-adic analytic spaces. We
use this to provide a new perspective on the construction of open and closed p-adic string
theory over Berkovich spaces. In particular, the analytic structure allows us to retain much
of the geometric flavor present in the Archimedean string setting. In a suitable large N limit
consisting of multiple prime factors, we also observe the emergence of more fine-grained
topological features.

A number of Appendices serve to supplement the main elements of this proposal, which
range from review of some of the relevant mathematical background to additional computa-
tions which provide support for some of the proposed speculations.
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1 Introduction

There is a seductive appeal to discretizing the laws of Nature. That being said, our best

understanding of fundamental physics continues to make heavy use of continuum concepts.

In this note we argue that in some quantum systems with a cutoff, there is a natural for-

mulation in terms of structures which appear in number theory and in particular arithmetic

geometry. This algebro-geometric language provides a way to transport many features of

smooth geometry to a discretized setting. Our discussion will necessarily be on the rather

speculative side, but hopefully this will not distract too much from the main contours of the

proposal.

To keep our analysis well-defined, we shall mainly focus on situations in which the space-

time as well as the target space for our fields are discretized in some way. This sort of

situation arises in many physical situations. For example, an experimentalist may only be

able to probe a system at a minimal time interval tmin, and moreover, the values that are

recorded by their measuring device may also be limited to some finite discretized level of

approximation. At a more ambitious level, one might consider formulations of quantum

gravity in which there is a minimal Planck time and Planck length for measurements.

Of course, some immediate issues with studying these sorts of systems is that lattice

formulations of quantum theories tend to break most spacetime symmetries (such as Lorentz

symmetry), and extreme fine-tuning is often required to recover these structures at long

distances.1 Similar issues are often present in non-commutative deformations of spacetime

as well as matrix model approaches to quantum gravity. In the arithmetic context, however,

there are analogs of the Lorentz group which can be maintained even in the discretized

setting.

Our operating assumption will be that once we discretize the target space and spacetime,

there is a natural sense in which the number of quanta which can be packed into any region

of the target space is discretized. For example, in the case of a bosonic scalar field theory, we

can interpret this in terms of the standard prescription for computing operator correlation

functions via the path integral through expressions such as:

⟨Ô1...Ôm⟩ =

∑
ϕ

[dϕ] exp (iS[ϕ]/ℏ)O1...Om∑
ϕ

[dϕ] exp (iS[ϕ]/ℏ)
, (1.1)

but in which the fields ϕ range over a discrete set such as the integers, and the parameter ℏ
satisfies the condition:

ℏ =
N

2π
, (1.2)

with N > 1 a positive integer. In this setting, evaluating the action on any field configuration

1It is also unclear how lattice formulations can be recoupled to quantum gravity, where the spacetime
itself is expected to fluctuate.
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results in S[ϕ] an integer, but in which only its value modulo N actually matters. One of

our aims will be to show how to extend this sort of observation to the standard set of fields

encountered in quantum field theory, including fermions, gauge fields, and even gravitons.

We will also argue that supersymmetry still makes sense.

As one might expect, additional features become manifest if we restrict to the special case

where 2πℏ = p a prime number. When we do so, we can borrow much of the apparatus of

algebraic geometry in characteristic p to formulate and study the resulting physical systems.2

Again by way of example, we will show that bosonic scalars of the discretized field theory

can be viewed as specifying a map between schemes defined in characteristic p:

ϕ : Xspacetime → Ytarget. (1.3)

Of course, the sense in which the “spacetime” of the field theory makes sense in characteristic

p is that it is a suitably discretized space, and we can equip it with a topology, and non-trivial

sheaves and maps to other spaces. See figure 1 for a depiction.

We use this perspective to propose how various field theories can be defined in the char-

acteristic p setting. It is also clear that some cherished physical structures such as a notion

of distance as defined by a metric will necessarily fall by the wayside in the characteristic p

setting. There are, however, close analogs which retain much of the physical flavor present

in Riemannian geometry in characteristic zero. For example, we can consider the space of

symmetric bilinear forms specifying maps T ∗X ⊗ T ∗X → Fp. This is the characteristic p

analog of the graviton. Indeed, our formulation will be flexible enough to demand that we

only work with structures invariant under suitable coordinate redefinitions, as captured by

morphisms between schemes.

Another aim of our analysis will be to study the impact on effective field theories gen-

erated in this way. We find that the the information contained in the spectrum of higher

dimension operators truncates, at least when evaluating the effective action on specific field

configurations. This in some sense follows from the fact that in modular arithmetic, we have

Fermat’s little theorem, which tell us that for integers m ∈ Z, reduction modulo p a prime

always satisfies mp = mmod p. Applied to a power series expansion in a physical field, this

automatically leads to a truncated effective action. This is in line with some Swampland

considerations such as [1–3] which suggest the appearance of correlated Wilson coefficients

in any quantum field theory coupled to higher dimension operators. That being said, our

proposal will involve working with the space of all possible rational morphisms between va-

rieties, and as a consequence, there will still be a formally infinite number of independent

Wilson coefficients, even though the effective potential can only ever attain a finite number

of possibilities. The formalism also seems to be flexible enough to accommodate much of the

mathematical structure in the study of scattering amplitudes, especially in terms of potential

formulations in twistor space.

2We review some aspects of arithmetic in characteristic p later on.
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More conceptually, we can use this path integral formalism to specify an implicit notion

of physical states. Even though we are working mod p so that no total ordering is available,

there is a notion of past and future with respect to a local time coordinate. We can achieve

this because our morphisms are locally presented as Laurent series of finite degree, and

negative degree terms are associated with modes in the past, and positive degree terms

are associated with modes in the future. Provided the spacetime X admits a fibration of

the form Xs → X → Xt over a dimension one variety Xt which we refer to as the “time

direction”, then rational morphisms involving just the spatial support serve to construct

states |Φ : Xs 99K Y ⟩ in a “big Hilbert space” Hbig. Including additional polar terms

associated with a local coordinate in Xt enlarges this space further to a “BIG Hilbert space”

which we refer to as HBIG. Of course, one can also consider the explicit evaluation maps for

these morphisms, and this leads to a “small Hilbert space” Hsmall.

The appearance of rational morphisms between varieties provides a natural starting point

for constructing both classical and quantum error correcting codes. In this interpretation,

the path integral sums over possible codes, and introduces a preferential complex phase, as

dictated by the choice of action. In this sense, the entire edifice of “physics in characteristic

p > 0” can be recast in information-theoretic terms. The use of quantum error correcting

codes in quantum gravity has been a topic of some interest in the holographic quantum

gravity literature (see e.g., [4–7]), and it would of course be natural to make closer contact

with these considerations.

In line with these considerations, we also argue that even in characteristic p we can or-

ganize the physical degrees of freedom according to a hierarchy of scales, and that “coarse

graining” naturally leads to a notion of entanglement across scales. Locally, we can treat

morphisms Xs 99K Y as polynomials, and higher degree modes can be interpreted as spec-

ifying “UV data” while lower degree terms specify “IR data”. This leads to tree-like struc-

tures which are reminiscent of related constructs which have appeared in the study of holo-

graphic tensor network models (see e.g., [8–10]) as well as the p-adic AdS/CFT correspon-

dence [11–13].

At a more practical level, the fact that we can approximate morphisms in terms of local

coordinate expansions means that we still have a mode expansion available which allows

us to carry out explicit evaluations of correlation functions. To illustrate we consider some

toy models and explicitly work out the corresponding path integral manipulations. An

interesting feature of this setup is that some loop corrections automatically vanish in this

setting, leading to suppressed contributions to various bubble diagrams. That being said,

loop corrections are in general present, leading to a non-trivial structure for such systems.

Other celebrated notions from the study of field theory, including symmetries and cur-

rents, as well as topological actions appear to have characteristic p versions. In the case of

our topological actions, this requires some further speculations for how cobordism theory

might operator in finite as well as mixed characteristic.

We envision applying these sorts of considerations to the study of quantum gravitational
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Figure 1: Depiction of a map between two varieties in characteristic p. Each dot indicates a
point of the corresponding discretized geometry. These maps can be viewed as field config-
urations in a sigma model, with Xspacetime the spacetime and Ytarget the target space.

systems, including (as already mentioned) in the study of quantum error correction. As

another example, we consider the analog of supersymmetric field theory with a quantized

Fayet-Iliopoulos (FI) parameter. There are hints from supergravity (see e.g., [14–17]) which

indicate that FI parameters in 4D systems may exist, provided they are quantized in units

of 2M2
pl with M2

pl = (8πG)−1 the reduced Planck mass squared, with G the 4D Newton’s

constant. Assuming this is possible, we study the characteristic p analog of supersymmetric

vacua in the presence of an FI parameter. We also find that some notions of the resulting

symplectic geometry carry over, giving us a notion of toric varieties in characteristic p. That

being said, the fact that there is no notion of “big or small” in characteristic p means that

there is little sense in which we can reach a semi-classical geometry in this case. We do,

however, find that there is a suitable notion of quasi-locality, as specified by the Grothendieck

topology. We note that the introduction of physical topoi has been discussed for example in

references [18–23] but we leave to future work any attempt to align with the considerations

found therein.

We believe that the present formulation also sheds light on some structures which appear

in number theory, although we leave a study of this for future work. For example, a well

known quantity is the Hasse-Weil Zeta function [24, 25] for a variety V defined over a finite

field Fq in characteristic p. A classic question in this subject is to compute the number of

points as defined over a finite field Fqn . This is all packaged in terms of the Hasse-Weil Zeta
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function:

ZV,q(z) = exp

(∑
n≥1

#V (Fqn)
zn

n

)
. (1.4)

Given the setup just explained, it is tempting to view this data as being specified by a

supersymmetric index for a physical system [26], but now in characteristic p:∑
n≥1

Trn
(
(−1)Fzn

)
= logZV,q(z). (1.5)

The appearance of an algebraic formulation for our physical system also enables us to

analyze systems of direct relevance in string compactification. Typically, the string com-

pactification geometry is treated as some large volume approximation to a more accurate

quantum corrected system. Since, however, our entire formulation is algebraic, classic con-

structions such as geometric engineering [27–30] have characteristic p analogs, and allow us

to formulate a conjectural correspondence between m-folds of ADE singularities with total

space a Calabi-Yau variety, and gauge theories of ADE type.

We also consider the mixed characteristic case, i.e., where we work over a p-adic space.

The appearance of p-adic numbers occurs in two natural ways in this setting. First of all,

we can consider N = pa a prime power, and in the limit a→∞, our path integral formalism

is well-approximated by a field theory defined by morphisms between varieties over the

p-adic numbers. A related comment is that there is a formal lifting procedure to go from

characteristic p geometries to p-adic geometries which provides a systematic lift of our setup.

We comment that in our case, the emphasis (at least for characteristic p spaces) is really

on rational morphisms ϕ : X 99K Y between p-adic schemes rather than the more typical

situation encountered in the p-adic physics literature which involves maps to geometries

defined over the real numbers. We can, however, pass to this special case by composing

these morphisms with character maps, and in this case we observe a fit with “standard”

notions from p-adic physics.

The treatment of the path integral in the p-adic setting provides us with our first en-

counter with a p-adic differential equation. In particular, this also provides us with a way

to make sense of period integrals such as those which appear in the study of Seiberg-Witten

theory and the B-model of topological string theory. Here, the operating theme is that so

long as a formal power series expansion is available (with a suitable radius of convergence),

then there is a notion of solving these differential equations.

Even more tantalizing is that there is a notion of “monodromy” in the p-adic setting,

and this tracks well with the corresponding notions present in the complex analytic setting.

This in particular means that some of the crucial properties of monodromy present in the

analysis of massless states which appear in Seiberg-Witten theory translate over to the

arithmetic setting as well. In fact, these considerations provide a direct connection between

the arithmetic properties of the central charge of the corresponding massless state and the
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arithmetic of the Seiberg-Witten curve, in particular its Zeta function.

Taking the large N limit also provides a route to recovering continuum notions such as

more refined topological spaces. Taking this limit at the level of the action and fields actually

produces, for N = pa with p a prime, a completion inside the p-adic numbers. If we instead

take a limit as obtained on the “phase factors” of the path integral valued in S1 ⊂ C∗, we
instead see a completion available in the real numbers. This provides a general route for

recovering a continuum limit from our general discretized considerations.

Indeed, we also consider the resulting structure of operator algebras in this context, and

this motivates us to take seriously various limits of operator algebras in the large N = pa

limit. Such limits provide a physical motivation for “filling” in the p-adic topology with

additional points, and naturally motivates the appearance of additional topological structure.

The first step in this direction leads us to the appearance of Tate’s rigid analytic spaces [31],

though we find that further physical demands such as analyticity of operator correlation

functions require refining this to a path connected space, as is obtained in the p-adic analytic

spaces of Berkovich [32], and generalizations thereof. In fact, from this starting point we can

give a proposal for a analytification of the p-adic string which we refer to as the “Berkovich

string,” presenting both closed and open string variations. An important feature of working

with p-adic analytic worldsheets is that much of the flavor of holomorphic geometry used

in the Archimedean string admits an analogous treatment in the non-Archimedean p-adic

analytic setting.

In the more general case where N = pa11 ...p
am
m is a product of primes, the arithmetic

perspective also provides helpful hints for how to proceed. In this case, it is fruitful to view

our geometry as fibered over the “affine line” SpecZ. By performing a path integral over

this bigger geometry, we can uniformly treat all primes at once. Viewed in this way, fixing a

particular value of N amounts to a semi-classical approximation. Localization near a given

prime divisor p of N then leads to a similar arithmetic interpretation for a general integer

N .

Lastly, let us mention that the notion of looking for connections between number theory

and physics is certainly not new to us. Indeed, many intriguing connections between p-

adic numbers and strings have been appreciated for some time in both early work such

as references [33–41] as well as in more recent work such as [11–13, 42–64]. The subject

of p-adic strings also shows up in some approaches to studying tachyon condensation [65].

Connections with certain arithmetic structures which appear in string theory have also been

noted (see e.g., [66] for an example of this sort). Relations between modular forms as they

appear in string theory and arithmetic questions have been considered in [67–78]. It has also

been appreciated that the calculation of period integrals for some Calabi-Yau threefolds is

amenable to techniques from number theory [79–86]. Some proposals for quantum mechanics

with different algebras include [87,88]. We were also inspired by the arithmetic path integrals

for certain topological field theories appearing in reference [89–92]. Perhaps closest in spirit

to the present considerations is the work of reference [93] which sets up much of the necessary
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mathematical formalism in a setting close to the physical considerations explored here.

That being said, we have not tried to fully reconcile our present perspective with these

considerations (with the notable exception of reference [93]) but it would be interesting to try.

Indeed, our underlying motivation is somewhat different. First and foremost, our interest in

the appearance of these structures is motivated by its potential use in studying physical, in

principle experimentally accessible systems. But of course, we hope that this will lead to a

two-way development, with physical notions helping to inform some questions in arithmetic

geometry, and conversely, that such number theoretic analogs of geometry can help in the

search for a fundamental formulation of physics.

The rest of this note is organized as follows. The general themes are organized according

to several parts. In part I (which includes the Introduction) we give our general motivation

and underlying philosophy. We begin in section 3 by discussing the sense in which discretized

systems allow for different choices of ℏ.
In part II we turn to the formal development of physical systems in characteristic p > 0.

In section 4 we begin with our first example, studying a discretized bosonic field. We gener-

alize this construction in several ways, eventually arriving at a more geometric formulation

amenable to study via methods in arithmetic geometry. Some aspects of the Hilbert space

associated to these systems are discussed in section 5. We next show in section 6 that these

structures can be interpreted as specifying a class of quantum error correcting codes. Sec-

tion 7 shows that there is a natural “scale entanglement” present in the Hilbert space of

state built from spatial morphisms. There is a resulting tree-like structure which is reminis-

cent of observations made in the context of recent holographic studies, including the p-adic

AdS/CFT correspondence, a feature we return to later on. We study mode expansions in

bosonic field theories in section 8, as well as some “classical” aspects of Green’s functions

in characteristic p in section 9. Section 10 studies symmetries and currents, and in section

11 we give a proposal for how to build topological actions. In section 12 we study physical

twistors in characteristic p. Section 13 discusses the generalization to fermionic degrees of

freedom, including a sketch of supersymmetric quantum mechanics in characteristic p. We

also speculate on a physical interpretation of the Hasse-Weil Zeta function. Section 14 an-

alyzes some aspects of discretized FI parameters. In section 15 we present a proposal for

geometric engineering in characteristic p.

In part III we turn to the case of more general ground fields and ground rings. This

includes working over fields in mixed characteristic, the main example being various p-

adic spaces, as well as further fibration over SpecZ. Section 16 discusses the extension of

this analysis to p-adic numbers, where we also make contact with the appearance of p-adic

differential equations, both in the classical and quantum setting. Section 17 considers a

specific application of these considerations, drawing out the arithmetic structure of Seiberg-

Witten theory and its connection to the Zeta function of an arithmetic curve. In section 18

we discuss some holographic structures which are present in physics over the p-adics, and in

section 19 we make contact with more “standard treatments” in the literature. Motivated by
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the need to obtain suitable limits of operator algebras, in section 20 we consider the further

generalization to p-adic analytic spaces. In section 21 we consider more general arithmetic

systems.

In part IV we wrap up the main body of the text. We present our conclusions in section

22. Acknowledgements are contained in section 23. Some comments on the version history

of this document are included in section 24.

In part V we provide a number of Appendices. We have ordered them according to

where they roughly appear in the ordering presented in the main body of the text. The

Appendices include some additional developments which range from original statements to

review of various topics which may be unfamiliar to the “typical” reader. In Appendix A we

analyze some 1D quantum systems in characteristic p. In Appendix B we explain how to pass

from finite differences of the sort which appear in lattice systems to the Hasse derivatives

which figure prominently in characteristic p geometries. Appendix C reviews some aspects

of finite fields, and in Appendix D discusses some aspects of geometry in characteristic

p. In Appendix E we present a brief review of Grothendieck topologies. Some aspects of

classical and quantum error correcting codes obtained via geometry in characteristic p are

discussed in Appendix F. Appendix G treats the evaluation of the partition function for a

free field. Appendix H presents an alternative way to define an action principle in finite

characteristic which directly references a preferred mode expansion basis. It also explains

some of the difficulties in extending this to more general geometries. A brief discussion of

the étale fundamental group is given in Appendix J. We discuss some aspects of real and

complex twistors in Appendix L. In Appendix M we present an “alternative” supersymmetric

quantum mechanics system in which we impose a different rule for Frobenius conjugation

on Grassmann fields. In Appendix K we list a few examples of Zeta functions. Appendix

N presents some evidence that FI parameters can be quantized in string constructions. In

Appendix I we review the construction of inverse limits and in Appendix P we review some

aspects of Witt vectors. Appendix O provides a brief introduction to the p-adic numbers.

We review the convergence properties of the p-adic exponential function in Appendix Q.

In Appendix R we review some aspects of the p-adic logarithm and its generalizations.

Appendix S discusses some aspects of ramification theory for algebraic and local fields,

and in Appendix T we discuss an explicit example of monodromy in the context of ℓ-adic

cohomology of an elliptic curve of the sort which appears in Seiberg-Witten theory. In

Appendix U we review some aspects of Berkovich spaces, and in Appendix V we briefly

discuss tropicalization maps. Appendix W includes some analysis of p-adic integrals which

appear in the computation of various p-adic string amplitudes.
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2 Disclaimers

As a general disclaimer, the nature of this work is, as already mentioned, quite speculative.

It is speculative in terms of both the physics and mathematics which is presented, and

especially on the potential connections between these themes. With that stated, we have

attempted to tie together various threads to produce a coherent picture.

Additionally, some of the material presented (especially some of the Appendices) is also

rather standard, and there are many well-known accounts. In such cases, we have attempted

to closely follow treatments which we personally found helpful and pedagogical. Nevertheless,

we have attempted to synthesize the various treatments to suit our particular needs.

Some readers may find this combination of speculations interspersed with well-known

facts repellant. We hope, however, that some will find parts of it helpful in their own

investigations.

With these disclaimers stated, we now proceed.
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3 Discretized Target Spaces

In this section we explore some of the consequences of discretizing a target space. In subse-

quent sections we shall refine this analysis, showing how additional structure can be main-

tained by working with geometry in characteristic p.

Our eventual proposal will be to construct a path integral by working with rational

morphisms between characteristic p varieties ϕ : X 99K Y of the form:

Φf∫
Φi

[dϕ] exp(iS[ϕ]/ℏ) ≡
∑

ϕ:X99KY
ϕ(tf )=Φf

ϕ(ti)=Φi

exp

(
2πi

p
S[ϕ]

)
. (3.1)

where X refers to the “spacetime” and Y to the target space. Locally, each such morphism

can be presented as a polynomial which includes possible finite degree meromorphic terms.

In this sense, the sum over paths is just a discrete sum over the space of possible morphisms,

and is thus “better behaved” than the generic situation one typically encounters in the

standard path integral.

This is to be contrasted with the first attempt one might make in specifying such a path

integral as obtained by discretizing the target space, as well as the source. Indeed, if one

considers geometries with a finite number of points, the space of all point set mappings

between such geometries is necessarily finite (one simply has to specify possible values for

each point set). This is essentially a lattice approximation, and with it one encounters the

usual pathologies in discretizing continuum physics. Another general worry is that if one

ever wishes to couple a quantum field theory to gravity, using a fixed lattice becomes quite

awkward because one expects spacetime to fluctuate anyway. We will ultimately need to

abandon this way of thinking about physics in discretized target spaces but it is nevertheless

instructive as a “cautionary morality tale”.

So, in order to motivate the form of our path integral, we shall first proceed in the most

straightforward way and ask about the consequences of discretizing the target space (and

source) of a quantum field theory. To rectify these issues we will indeed need to pass over

to a formulation of physics in characteristic p specified in terms of structures which appear

in arithmetic geometry.

To get there, we shall first proceed by motivating the reasons for entertaining discretiza-

tion at all. We emphasize that some of the first attempts mentioned in this section will need

to be revisited in subsequent sections. The core idea which we will hold on to is that we

can conveniently summarize discretization on a target space as setting a convention in which

fields take values on the integers and the reduced Planck constant is set to:

ℏ =
N

2π
. (3.2)
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We first motivate this discretization by way of a few examples. First, we consider a point

particle, then a field on a 2D spacetime. We then make some brief philosophical comments.

The aim of section 4 will be to formalize some of these features. Some additional details on the

lattice approximation for 1D point particles in characteristic p are presented in Appendix A.

For additional details on mode expansions for quantum fields in characteristic p, see section

8.

3.1 Point Particle

As a first example, suppose we have a particle moving in one spatial dimension. Classically,

we can visualize this by introducing a function of time Y (T ), indicating the position of our

particle. A common situation is an action of the form:

S[Φ] =

∫
LdT =

∫
dT

(
αm (∂TΦ)

2 − V(Φ)
)
, (3.3)

where α is an integer andm is proportional to the mass of the particle. Note that we have not

canonically normalized the fields. This will be important when we turn to the discretization

of our system. Here, V(Φ) denotes a potential energy and in what follows we shall assume

that this is always taken to be a polynomial in the field Φ. In practice, one often expands

a potential energy density about some background value of Φ, say Φ0, and then analyzes

the leading order terms of such an expansion. In this sense, we expect to get a “good

approximation” by just dealing with polynomials of possibly very high degree. Indeed, one

expects that in a theory of quantum gravity some higher order terms may actually capture

strictly redundant information [3].

Quantum mechanically, we can use this as a starting point for the path integral. For

example, we are instructed to sum over possible choices of functions Φ(T ), each weighted by

a factor exp(iS[Φ]/ℏ). Correlation functions involving operators Ô built from the Φ’s are

obtained in the usual way by the formal relation (we leave time-ordering implicit):

〈
Φf

∣∣∣Ô(Tm)...Ô(T1)∣∣∣Φi

〉
≡

Φf∫
Φi

[dΦ] exp(iS[Φ]/ℏ)O(Tm)...O(T1)

Φf∫
Φi

[dΦ] exp(iS[Φ]/ℏ)
(3.4)

For brevity, in what follows, we shall leave the initial and final values of the field configura-

tions implicit.

It is natural consider possible discretizations of the above system. For example, if we

consider a particle which can only occupy points on a spatial lattice, there is a minimal

spacing for values of the field. Doing so, however, introduces fresh complications. For

example, if we simply posit Φ(T ) takes values over the integers, then our notion of a time
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derivative ceases to make sense. There is a workaround which is available in systems where

we are also only able to make measurements at discretized time steps. For example, an

observer may be limited in how frequently they can actually measure the response of the

system. In a Hamiltonian evolution of a given state such as:

|Ψ(T )⟩ = exp(−iĤT/ℏ) |Ψ(0)⟩ , (3.5)

it may be that there is a minimal time resolution, so we can only ever access discretized time

steps.

Discretization in the target space and the time direction suggests a way to proceed. First,

we introduce a minimal step size for the field. Additionally, we introduce a minimal time

step by which a particle can actually change. Changes in the energy are then also discretized.

Making these changes amounts to the lattice approximation:

T 7→ τtimet (3.6)

Φ(T ) 7→ ℓtargetϕ(t) (3.7)

∂TΦ(T ) 7→
ϕ(t+ 1)− ϕ(t)

τtime

(3.8)∫
dT 7→

∑
t

τtime, (3.9)

V(ϕ) 7→
mℓ2target
τ 2time

V (ϕ) (3.10)

where we now assume t, ϕ(t), ϕ(y) ∈ Z. Returning to the form of our action, we now have:

S[ϕ] =
∑
t

mℓ2target
τtime

(
α (ϕ(t+ 1)− ϕ(t))2 − V (ϕ)

)
. (3.11)

Evaluating correlation fuctions now proceeds just as in the ordinary path integral. For

example, the integration over all paths is now replaced by discretized sums:

Φf∫
Φi

[dΦ] 7→
∑
ϕ(tf )

...
∑
ϕ(ti)

δ(ϕ(tf ) = ϕf )δ(ϕ(ti) = ϕi) (3.12)

where here, we have specified an initial and final field configuration. We have also dropped

dimensionful factors associated with the path integral measure, since we have already now

passed to the discretized setting.

The main thing we wish to explore is what happens when the dimensionless ratio involving

18



these length scales and the Planck constant is held fixed:

1

ℏ
mℓ2target
τtime

=
2π

N
, (3.13)

with N an integer. We could, of course, have jumped straight to this form of the phase

factor in the path integral by working in natural units with all lengths and time steps set to

one. In that case, we could assert:

ℏ =
N

2π
. (3.14)

It is customary to work in natural units where ℏ = c = 1, but a priori we can consider

more general choices, and they have no impact on the physics. Indeed, the classical limit

is typically associated with the limit ℏ → 0. Here, we are considering the opposite regime

where all behavior is highly quantum, and so we have chosen to emphasize this by absorbing

all these changes into the choice of the reduced Planck constant. In any event, the path

integral is now weighted by factors of the form:

exp(iS[ϕ]/ℏ) = exp

(
2πi

N

∑
t

(
α (ϕ(t+ 1)− ϕ(t))2 − V (ϕ)

))
. (3.15)

This is where we encounter our first surprise. In these units, we observe that if all

quantities in our system are discretized integers, then the only contributions we actually

care about are obtained modulo N . Indeed, this is just because exp(2πi) = 1.

One might also ask about observables in this sort of system. One class of operators which

respect the observed mod N structure is given by “vertex operators” of the form:

U(t) = exp(2πiϕ(t)/N). (3.16)

Compared with our discussion of path integrals given above, the only difference is that now,

we need not integrate over all paths, just their modN residues. In the original continuum

theory, these operators are mildly non-local, arising from expressions such as:

exp

it+ε∫
t−ε

dt′

τmin

Φ(t′)

ℓmin

 , (3.17)

for ε a small number. This amounts to a small amount of “smearing” in the original contin-

uum theory.

Another comment has to do with the domain of the time coordinate. Assuming that the

Hamiltonian has integer eigenvalues, we observe that the time evolution operator:

exp

(
− i
ℏ
Ĥt

)
= exp

(
−2πi

N
Ĥt

)
(3.18)
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repeats after at most N time steps.

3.2 2D Example

In the previous subsection we introduced a first example of a discretized system, observing

the appearance of a natural modN structure in the resulting path integral. We now present

a generalization of this to the case of a 2D field theory. We focus on the case of a 2D non-

linear sigma model of the sort one encounters in the study of string theory. In this case, the

spacetime of the field theory consists of the worldsheet of the string. We focus on a lattice

approximation to flat space R1,1 and consider the Polyakov action:

S[Φ] =
1

4πα′

∫
d2σ GAB(Φ)h

ab∂aΦ
A∂bΦ

B. (3.19)

Here, α′ has dimensions of length squared. This, of course, is the starting point for under-

standing perturbative strings moving in a target space with metric GAB(Φ). It has been

appreciated for some time that the minimal length scale in string theory is not set by
√
α′,

but can be far smaller, and involves the string coupling gstring as well [94, 95]. With this in

mind, we explore the consequences of assuming that there is a minimal length scale which

can be probed by our string. Much as in our discussion of the point particle, we first consider

a rescaled version of the fields, writing:

Φ 7→ ℓtargetϕ, (3.20)

so that the ϕ’s are valued in the integers. By the same token, we also replace all derivatives

by lattice derivatives, with the worldsheet specified by points on the two-dimensional lattice

Z×Z. In this case, observe that since we are in two dimensions, the rescaling of the measure

factor from the worldsheet integral cancels the rescaling of the lattice derivatives.

We would like to understand what happens when the dimensionless ratio involving the

target space length scale and the string scale and the Planck constant is taken to be fixed

as:
1

ℏ
ℓ2target
4πα′

=
2π

N
, (3.21)

with N an integer. Much as in the case of the point particle example, we could have jumped

straight to this form of the phase factor by working in natural units with all lengths and

time steps fixed to one and setting:

ℏ =
N

2π
. (3.22)

In the context of string theory, taking the large N limit means the string tension passes to

zero. This is clearly far away from the realm of classical geometry.

Pressing on, most of our discussion of this 2D example proceeds as in the 1D case. We
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can again also speak of vertex operators such as:

U(σa) = exp(2πikAϕ
A(σa)/N). (3.23)

Again, in the continuum theory this sort of expression comes about from a mildly non-local

operator with some small amount of smearing, as per our discussion below equation (3.17).

One can also entertain integer valued operators as well, and the prescription for calculating

correlation functions is essentially the standard one for the path integral, just with a new

domain of summation / integration.

3.3 Philosophical Comments

By now, the general procedure should be clear, at least for field theories specified by scalars.

We discretize the target space, and also the spacetime of the field theory.3 The case of

two dimensions is a bit special in this regard, because the actual lattice spacing of the

spacetime drops out from our expression for ℏ. In more general systems with non-trivial

operator scaling dimensions, similar considerations would likely also apply. This motivates

us to study systems in which the values of fields are restricted to integers, with the reduced

Planck constant set to the value:

ℏ =
N

2π
. (3.24)

At a conceptual level, introducing this sort of discretization is appealing for a number

of reasons. As we have already mentioned, there is a sense in which any measurement by

an observer already comes in “quantized units.” Indeed, there is a strict difference between

the real numbers and those which are actually computable (see e.g., [96]). An additional

comment is that fundamental physics makes reference to quantities such as a Planck time

and Planck length. All of these signal some (perhaps ineffable) basic intuition that there is

a minimal unit of measurement. Note also that the class of operators which naturally enter

in this setting include some mild amount of non-locality, such as:

exp

i∫
εD

dDx

ℓDmin

Φ(x)

Λ∆

 (3.25)

where ℓmin refers to a minimal length scale, and Λ is a mass scale, and ∆ is the engineering

dimension for a field Φ. Here, the integral takes place over a small region εD, indicating a

mild amount of smearing / averaging. This is also in line with the expectation that there

are limits to statistical inference in quantum gravity [97].

Discretizing parameters is also natural, especially in systems where moduli are stabilized.

Arithmetic properties of stabilized moduli have been discussed in [66, 72, 74, 76–78, 86], and

3Note that one can also consider various hybrid setups, where the onset of discretization appears first in
some extra dimensions, and only eventually in the actual spacetime for macroscopic observers.
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so one can view our attempts to discretize the target space as very much in line with Planck

scale moduli stabilization.

We also remark that in some cases, this intuition has recently been sharpened in the

context of the Swampland conjectures (see e.g., [1, 2, 98, 99] and references [100–103] for

reviews). One of the recurring themes in this line of research is to explore the impact of the

Planck scale on long distance physics, particularly low energy effective field theories. Naive

extrapolation of an effective field theory is expected to produce various pathologies, and one

potential way around this is to discretize various physical structures (see e.g., [104]).

On the other hand, there are also well-known drawbacks to discretization. For one,

introducing an explicit lattice cutoff immediately destroys Lorentz invariance of the system.

In lattice field theory, it is common to fine-tune all parameters so that Lorentz invariance

is recovered at long distances. Such an option may not be available here since we are also

discretizing the parameters of the system. Another difficulty is that the proper treatment

of fermions, let alone supersymmetry is rife with technical (though not insurmountable)

difficulties. See for example, [105] for some recent discussion on these points. Along these

lines, any notion of quantum gravity on a lattice is again potentially quite problematic since

the lattice itself would need to fluctuate. An additional concern is that one of the powerful

probes of quantum locality comes from analyticity of the S-matrix. Much of the power of

results in scattering amplitudes comes from the fact that the S-matrix can be analytically

continued to “unobservable” large and complex values of momenta. Sacrificing this in the

name of discretization would be a pity.

We propose to balance these competing considerations using the geometry of numbers.4

4In the poetic sense, not the strict sense of Minkowski.
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Part II

Physics in Characteristic p > 0
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4 Discretization in Characteristic p > 0

In the previous section we presented an intriguing observation that some discretized systems

have close contact with some crude features of arithmetic modulo N . We also saw, however,

that a direct lattice approximation produces some potentially unpleasant features, partic-

ularly if we wish to maintain contact with analytic structures which appear so central to

many aspects of fundamental physics. The main idea we develop here will be to consider

an alternative interpretation of such discretized systems in which we leverage the “analytic

structure” present in arithmetic geometry, namely algebraic geometry in characteristic p > 0.

With this in mind, in this section we confine our attention to the special case where N = p

is an odd prime number. Much of what we develop also works (with suitable amendments)

in characteristic 2, but we do not discuss this special case in what follows. The main issue

we need to develop is a suitable notion of a path integral, as defined by an action principle.

This will require us to provide a notion of:

Φf∫
Φi

[dϕ] exp(iS[ϕ]/ℏ) ≡
∑

ϕ:X99KY
ϕ(tf )=Φf

ϕ(ti)=Φi

exp

(
2πi

p
S[ϕ]

)
, (4.1)

as well as insertions of operators, as in our discussion around equation (3.4):

⟨Ô1...Ôm⟩ ≡

Φi

∑
ϕ:X99KY
ϕ(tf )=Φf

exp
(

2πi
p
S[ϕ]

)
O1...Om

Φi

∑
ϕ:X99KY
ϕ(tf )=Φf

exp
(

2πi
p
S[ϕ]

) , (4.2)

where the operators Oj built out of the fields are viewed as taking values in the character

group of a finite field.

We interpret this in the following subsections in increasing levels of abstraction, but the

main idea will be to view it as a sum over all possible morphisms ϕ : X 99K Y .5 The use

of the dashed arrow is to remind us that we allow poles along marked subspaces in X. We

5Here, our main requirement is that we can present our map in terms of a polynomial in local coordinates.
For affine varieties X and Y given respectively by closed (in the Zariski topology) subsets of affine spaces An

and Am, a morphism ϕ : X → Y is given by the restriction of the appropriate polynomial maps An → Am.
Morphisms ϕ : X → Y are in one to one correspondence with algebra homomorphisms on the respective
coordinate rings (loosely speaking, the “pullback map”) ϕ# : K[Y ] → K[X], where we work over some
ground field K. For further discussion, see e.g., [106]. In “practice”, it will be enough for our purposes to
specify such a morphism by indicating how the m-tuple of polynomials ϕ = (ϕ1, ..., ϕm) restricts onto Y ,
where the generalization to a rational morphism ϕ : X 99K Y just involves taking ratios of polynomials. For
the most part we will often discuss the “simplest” yet still non-trivial case of rational morphisms between
affine spaces.
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will also need a notion of a Lagrangian density L[ϕ], which, for a fixed ϕ, is locally just a

polynomial over a finite field. The action are given by evaluating L[ϕ] at all the points of

X and summing up. Or alternatively, we can just evaluate S at all the points and take the

product: ∏
x∈X

exp

(
2πi

p
Sx

)
. (4.3)

We will impose a notion of “unitarity” by which we mean that the complex phases all have

norm one. We enforce this through the condition that the evaluation of the action in this

way produces a quantity valued in Fp. Finally, the “limits of integration” Φi and Φf indicate

fixed values of our morphism at marked locations on X specified by the divisors ti = 0 and

tf = 0 We return to the quantum interpretation in section 5.

The rest of this section is organized as follows. We begin by developing a notion of

physics over the finite field Fp. We follow this with a discussion of finite field extensions such

as Fq, and finally the algebraic closure Fp. We then extend this to varieties over finite fields

in characteristic p.

4.1 Physics on Fp

We begin by revisiting our discretized bosonic system, but now with an eye towards main-

taining additional analytic structure. We do this so that we can keep additional symmetries

manifest, and also so that we can eventually generalize to systems with other sorts of degrees

of freedom (such as fermions, vector bosons and gravitons). We discuss an alternative way

to build finite characteristic actions in Appendix H, as well as some of the difficulties in

generalizing it to more general geometries.

Let us return, then, to nearly the beginning. We now posit that we are working with a

quantum system with integer values for our fields and in which the reduced Planck constant

is discretized in units of p:

ℏ =
p

2π
. (4.4)

We also assume that all observables of interest are really specified modulo p. For example,

we assume the kinetic and potential energies of the action take values in the integers, and

that the physical operators of interest are all specified by fields modulo p. Some important

examples to keep in mind include exponentiated fields which take values in the character

group for (Fp,+), viewed as an additive group.

Working over the integers modulo p, we arrive at a finite field, Fp.
6 We review some

properties of finite fields in Appendix C, and we refer the interested reader there for a brief

discussion of this rich subject. Compared with more familiar fields such as the rational

numbers, real numbers or complex numbers (or even the p-adics), adding up any element

6Unfortunately, the terminology “field” will be used for different sorts of objects. Hopefully the context
will be clear.
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ϕ ∈ Fp by a multiple of p results in zero, namely pϕ = 0. A field which satisfies this property

is said to be in characteristic p > 0. If this property does not hold, we say that the field is

in characteristic zero.

One consequence of this is that there is no natural notion of a metric we can provide,

though as we explain, there is a close characteristic p analog which retains some of the

structure one would want of a physical metric. That being said, many analytic structures of

geometry do remain intact provided we are flexible in our notion of what counts as a physical

morphism.

Having specified that our physical fields actually take values in a finite field, we could in

principle just repeat our lattice construction now, by specifying for each point x ∈ Xspacetime

on the spacetime lattice a value ϕ(x) ∈ Fp. So, we can view Xspacetime ≃ ZD as a D-

dimensional lattice with one direction singled out for time. We will shortly generalize this

to move away from this limited choice.

As we have already mentioned, the notion of a finite derivative is a bit awkward, especially

when there is no natural notion of “metric.” To develop a suitable replacement, we will first

consider a natural class of objects given by polynomials in some number of variables, written

as Fp[u1, ..., uD]. Our physical field ϕ can now be viewed as a polynomial in these variables:

ϕ(u1, ..., uD) =
∑

i1,...,iD

ϕi1...iD(u1)
i1 ...(uD)

iD , (4.5)

where each of the ϕi1···iD is an element of Fp. Taking a derivative proceeds just as in ordinary

calculus. Note that when the exponent is a multiple of p, this derivative is automatically

zero, a consequence of working in characteristic p. In principle, one can just continue to

take ordinary derivatives, but a slightly more sophisticated option is to consider a Hasse

derivative.7 With all of these considerations in mind, we see that rather than dealing with

a finite difference, it is in some sense simpler to work with derivatives of polynomials. Of

course, once we evaluate the derivative we just compute the polynomial at the prescribed

(integral) spacetime point, reduced modulo p. As an additional comment, we note that

the space of polynomials is of course infinite. To generate concrete approximations we can

always truncate to a fixed degree. This can then be used to match up with the lattice

approximation.

Defining actions of relevance for physical systems is now straightforward. We illustrate

by way of example. Given a polynomial ϕ ∈ Fp[u1, ..., uD], we introduce a Lagrangian density

L[ϕ] as a functional on a given choice of ϕ. By composition of maps, this can also specifies

7In a variable u, the rth Hasse derivative is defined via its action on a monomial un: D(r)un = n!
n!(n−r)!u

n−r

when 0 ≤ r ≤ n, and otherwise vanishes. The advantage of using this derivative is that it allows more terms
to remain non-zero. Another helpful feature is that an analog of Taylor’s theorem holds in terms of a local
parameter u: f =

∑
r
D(r)(f) · ur.
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an element of Fp[u1, ..., uD]. As a specific example, we take:

L[ϕ] = α
(
(∂1ϕ)

2 − (∂2ϕ)
2 − ...− (∂Dϕ)

2)− V (ϕ), (4.6)

where α ∈ Fp and V ∈ Fp[ϕ]. To extract a number, we now sum over the points in the

spacetime using the evaluation map:

S[ϕ] =
∑

(x1,···,xD)∈Xspacetime

L(u1 = x1, ..., uD = xD), (4.7)

where now we simply treat L as a polynomial in the formal parameters of Fp[u1, ..., uD], and

then evaluate. In this case, the phase factor of the path integral defines a character map on

the additive group of the finite field:

exp : (Fp,+)→ U(1) (4.8)

S 7→ exp

(
2πi

p
S

)
. (4.9)

As it stands, we are summing over a lattice with an infinite point set. This means in

particular that S evaluated on this physical field configuration may not be well-behaved. On

the other hand, since ϕp = ϕ in Fp, we are typically summing over “multiple copies” of the

same spacetime point when we evaluate over all the integers.

One possibility is to just reduce the lattice ZD modulo p, so that we instead deal with

D-dimensional affine space in characteristic p:8

Xspacetime = A1(Fp)× ...× A1(Fp)︸ ︷︷ ︸
D times

= AD(Fp). (4.10)

In the spirit of algebraic geometry, we can also consider more general algebraic varieties in

characteristic p. These more general choices can have more or less points depending on the

choices of hypersurface equations. See also Appendix D.

With this in mind, we can already anticipate that it will be fruitful to expand our horizons,

allowing X to be specified as the zero set of more general polynomials in characteristic p. By

a similar token, we can also enlarge the target space Y in a similar way. In all these cases,

there is a suitable generalization of a polynomial to maps of the form:

ϕ : Xspacetime → Ytarget, (4.11)

where so far, we have restricted to affine spaces. The main idea is to view these ϕ’s as locally

specified by polynomials, and to then construct a Lagrangian from these fields.

A surprising feature of our Lagrangian is that the kinetic term of our scalar field theory

8Recall that AD(Fp) = Spec (Fp[u1, ..., uD]), and that as a point set, the affine line A1(Fp) is just Fp.

27



seems to make reference to a Lorentzian signature metric. Of course, this is an illusion; in

characteristic p we also have:

(∂1ϕ)
2 − (∂2ϕ)

2 − ...− (∂Dϕ)
2 = (∂1ϕ)

2 + (p− 1)((∂2ϕ)
2 + ...+ (∂Dϕ)

2), (4.12)

so if we naively lift back to characteristic zero, we could view our Lorentzian signature

“metric” as actually specifying a Euclidean signature metric, but with different weighting

for the spatial and Euclidean time directions. That being said, the conjugacy class of the

different quadratic forms are indeed different, even in characteristic p, so there is still a

meaningful distinction captured by the signature of a quadratic form.

4.2 Physics on Fq

Our discussion thus far has focused on varieties defined over Fp, the integers modulo p. We

now extend these considerations to other finite fields such as Fq. Recall from Appendix C

that every finite field in characteristic p has q = pn elements for some n ≥ 1. The field Fq

can be constructed as the splitting field of an irreducible degree n polynomial over Fp. We

can think of this field as obtained by adjoining a single root α of such a polynomial, writing

Fq = Fp(α). From the perspective of Galois theory, we can view Fq as a vector space over

the field Fp. A convenient basis of vectors is given by the pth powers of this root, so we can

represent any element in Fq as a power series of the form:

ϕ =
n∑

j=1

ϕjα
pj−1

, (4.13)

for ϕj ∈ Fp. Indeed, the Frobenius automorphism:

F : Fq → Fq (4.14)

ϕ 7→ ϕp (4.15)

simply pemutes these powers. Here, we have used the fact that in characteristic p, (a+b)p =

ap + bp.

The appearance of an n-dimensional vector space over Fp has a clear interpretation in

terms of the physical degrees of freedom we have already introduced. Instead of considering

a single physical field moving in a 1D target spanned by the integers, we can consider n such

physical fields. We can denote this by an n-component vector with coordinates ϕ(1), ..., ϕ(n).

This also makes it clear that we can construct corresponding Lagrangians involving our n

physical fields. As an example, we can construct a kinetic term for our n physical fields given

by:

GAB

(
∂1ϕ

A∂1ϕ
B − ∂2ϕA∂2ϕ

B − ...− ∂DϕA∂Dϕ
B
)
, (4.16)

where repeated indices are summed over. Here, we have introduced a symmetric bilinear
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form with entries GAB:

G : Fn
p × Fn

p → Fp, (4.17)

which specifies a “dot product” for the system.

Now, instead of working in terms of these n-component vectors, we could alternatively

view this as a single physical field on a one-dimensional target Fq. In characteristic zero,

we implicitly do exactly this sort of thing when we view a complex scalar field as a linear

combination of two real scalars. In contrast to the complex numbers, however, there are many

analogs of the imaginary numbers which we can adjoin to Fp. As explained in Appendix C,

we can alternatively view the bilinear forms of line (4.17) as an Fp valued pairing:

G : Fq × Fq → Fp. (4.18)

So, it is a matter of taste whether we wish to work in terms of many physical fields, or in

terms of a single Fq valued field. The main condition we need to enforce in this generalized

perspective is that our action takes values in Fp rather than the larger field Fq. Arguing

by analogy with other quantum systems, we need to ensure that there is a proper notion of

“unitary time evolution,” and this would be destroyed if our action ended up being valued

outside the ground field, i.e., the integers modulo p.9

One way to construct Fp valued actions is to demand that all evaluations are invariant

under the Frobenius automorphism F with F (ϕ) = ϕp. Indeed, Fp is the only subfield of Fq

invariant under this automorphism. Given an element ϕ ∈ Fq, common invariants include

the Trace and Norm:

Trace(ϕ) =
n−1∑
i=0

F i(ϕ) (4.19)

Norm(ϕ) =
n−1∏
i=0

F i(ϕ). (4.20)

The Trace is clearly useful in producing invariant kinetic terms, while both the Trace and

Norm are useful in constructing invariant potential energy densities. At a more general level,

our only true demand is that our action have “local” interaction terms. There are, however,

physically motivated choices, as we have indicated above.

Having seen that we can extend the target space to be Fq, one might ask whether a

similar extension to spacetimes defined over Fq is well-motivated. Of course, at a formal

level, nothing stops us from doing so. Indeed, so long as our action continues to evaluate to

elements in Fp, there is no reason not to make this extension. From a physical perspective,

9Of course, the notion of “unitarity” is less clear in this setting because even our notion of “time ordering”
in the characteristic p setting is somewhat less clear. There is, however, still a notion of past, present and
future as dictated by the degree of terms in local Laurent expansions. We provide further discussion on such
Hilbert space considerations in section 5. We thank S. Cecotti for several insightful criticisms on this point.
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one can view this as supplementing our original discretized spacetime by additional points. A

perhaps more satisfying answer is that the target space for a string is interpreted as another

spacetime in its own right. In this context, then, it is again sensible to allow for such field

profiles.

4.3 Physics on Fp

Proceeding in this way, we can now ask about the interpretation of taking the target space to

be Fp, the algebraic closure of our finite field. One might view this as playing the analogous

role to that which the complex numbers play in relation to the real number numbers. Of

course, here, there are many more analogs of the “imaginary numbers” available!

One important remark is that the algebraic closure has infinite order. This means that

the procedure for computing values of the action used previously will not really work, since

the “evaluation map” procedure requires us to sum over all the points of a variety. Now, in

characteristic zero we could introduce a measure on our spacetime and use this to suitably

integrate over the Lagrangian density.

What can we do in the present case? The main idea we use to define the path integral

phase factor exp(iS/ℏ) in this case is to observe that actually, our evaluation can instead

be viewed as a product over characters. Recall that for a field K, the group of additive

characters involves an “exponential map” to U(1) ⊂ C×. Phrased in this way, we can,

for each point in a finite field first compute the additive character, and only then take the

product. In the obvious notation, the evaluation of the phase factor for the path integral

can instead be written as: ∏
x∈X

exp

(
2πi

p
Sx

)
∈ U(1) ⊂ C×. (4.21)

The advantage of setting things up this way is that now, we can consider a sequence of

containments:

K0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Km ⊂ ... ⊂ Fp, (4.22)

and with it the corresponding sequence of characters obtained from evaluation on a given

field configuration:

χK0 , χK1 , ..., χKm , ... (4.23)

Of course, there is no guarantee that such a sequence will converge in the metric topology

of C. Additionally, there is of course more than one way to build a nested containment of

finite field extensions contained in Fp. To have a well-defined limit, we require that any such

sequence converges to the same point in U(1), and when it does, we write the limit as:

lim
−→
χKn ≡ χFp

. (4.24)
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At a practical level, however, we can simply truncate a given sequence. Proceeding in this

way, we can speak of path integrals over algebraically closed fields such as Fp.

In this enlarged setting we can also contemplate the physical meaning of the Frobenius

automorphism, namely the generator of the absolute Galois group Gal(Fp/Fp). For finite

fields Fq we interpreted the Frobenius map as permuting a collection of Fp valued fields, and

the same considerations apply here as well, albeit for a now infinite collection of physical

fields. This provides another way for us to interpret our path integral phase factor of line

(4.21).

4.4 Physics on Varieties in Characteristic p

Our discussion so far has mainly focused on the simplest examples of spacetimes and target

spaces. We can also consider more general geometries by specifying varieties in characteristic

p. The procedure for constructing such spaces is a standard one from algebraic geometry, and

it carries over essentially unchanged. We construct affine patches of a variety by specifying

the zero set for some polynomials. Then, we glue these patches together to produce a our

more general variety.10 We now speak of our physical fields as specified by rational maps of

the form:

ϕ : Xspacetime 99K Ytarget. (4.25)

In terms of the local coordinate rings OX,x and OY,y for x ∈ X and y ∈ Y , this means that

we will allow our physical fields y to be written as ratios:

ϕ =
P

Q
. (4.26)

The reason we should allow such maps is that in most geometries of interest, working with

just polynomials will not produce enough “interesting” maps. This is the point of allowing

birational maps. The price we pay in doing this is that we inevitably encounter possible

singularities in the evaluation of our action. This is actually not that problematic, it just

indicates the physical presence of a source, and means that we need to specify some choice

of boundary conditions in the path integral with prescribed pole structure for field config-

urations. This is often referred to as inserting a defect operator in the path integral. This

is also customary in specifying asymptotic scattering states. For all these reasons, we shall

remain flexible in our notion of a physical field. The proper notion of the path integral would

seem to involve summing over rational morphisms Xspacetime 99K Ytarget.

In this more general setting, we can now also provide a more geometric formulation for

the terms appearing in our action. Consider, for example, the kinetic term of a bosonic field

theory. In characteristic p, we can still speak of the cotangent space to a point, so we can

10The extension to schemes and stacks poses no additional complications other than having to carry around
more formalism. We therefore leave it implicit in what follows.
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consider the pullback map on the cotangent spaces:

ϕ∗ : T ∗y Y 99K T ∗xX, (4.27)

a differential such as dϕ has the standard local form:

dϕA =
∂ϕA

∂xa
dxa. (4.28)

Indeed, as we have repeatedly emphasized, much of the algebro-geometric structure typically

used in characteristic zero carries over to characteristic p (with suitable amendments).

Additionally, we can introduce symmetric bilinear forms:11

G : T ∗Y ⊗ T ∗Y → Fq → Fp (4.29)

h : T ∗X ⊗ T ∗X → Fq → Fp, (4.30)

where we have factored this map through the Trace map. We refer the reader to Appendix

D for the definition of the cotangent space in characteristic p. The main point is that even

though there is little notion of “distance,” in these spaces, we can still introduce symmetric

bilinear forms valued on the “observable” numbers.

Consequently, we can now specify far more general actions in characteristic p as well.

Superficially, there is little change from our earlier considerations. For example, a non-linear

sigma model metric on a spacetime X can be written as:

S =
∑
x∈X

√
dethhabGAB∂aϕ

A∂bϕ
B. (4.31)

Here, each of the ϕ’s is to be interpreted as a rational map from X 99K Y , and derivatives of

local coordinates on X are computed as before. Again, our only demand at this point is that

for each such physical field configuration, the action remains valued in Fp, this being the

analog of unitarity in characteristic p. The appearance of “
√
deth” is really a stand-in for

the scalar dual to the “volume-form” in Ωm(X,KX). This volume-form implicitly depends

on the bilinear hab. See subsection 4.5 for further discussion.

Observe also that the expression we have arrived at is naturally covariant, even though

we are working on a discretized spacetime and target space. Indeed, under a non-singular (up

to a lower codimension space) change of coordinates, the standard rules of tensor calculus

hold. In characteristic p, the analog of a local analytic isomorphism (i.e., a diffeomorphism)

is an étale morphism (a special case of a smooth morphism in which the relative dimension

is zero). The main thing we want to ensure is that we have the characteristic p analog

of the inverse function theorem for manifolds in characteristic zero. Demanding that the

11Here we use the physicist convention for a metric, ds2 = GABdY
AdY B so we evaluate on the cotangent

bundle rather than the tangent bundle.
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Jacobian is invertible ensures this. See Appendix D for an extremely brief discussion of étale

morphisms.

As a final generalization, now that we have moved to a far more geometric language, it

is natural to ask whether we can start to incorporate some additional sorts of degrees of

freedom, such as vector bosons and even gravitons. A priori, there does not appear to be

any issue with doing this in characteristic p.

In fact, some of the mathematical formulation of vector bosons and gravitons in char-

acteristic p has been carried out in reference [93]. The key feature for us is that using a

suitable notion of localization of sheaves, the resulting formulae for the gauge connection

and “metric” behave completely analogously to what one has in the characteristic zero case!

For example, for an abelian gauge field Va, we can consider gauge transformations such

as:

Va 7→ Va + ∂aε, (4.32)

where ε is to be interpreted locally as a polynomial in the coordinate ring of the variety.

Note that the field strength:

Fab = ∂aVb − ∂bVa (4.33)

is invariant under such gauge transformations, independent of the characteristic. Quantities

such as FabF
ab can then be used to build gauge invariant actions in the standard way. Here,

we raised and lowered indices with a symmetric bilinear form hab.

Constructing a scalar degree of freedom charged under such a field is also straightforward.

For example, given α, we can impose the condition for gauge transformations:

α 7→ α− ε, (4.34)

so the quantity:
1

2
gab(∂aα + Va)(∂bα + Vb) (4.35)

is also gauge invariant.

We now provide a more systematic treatment of gauge interactions, but still focused

primarily on motivated examples. From the outset, one complication we face is that in

characteristic zero we can easily pass from elements of a Lie algebra to a local presentation

of an element in the Lie group via the exponential map. In characteristic p more caution is

warranted but the general formalism of Lie groups and their relation to Lie algebras can still

be formulated, as in reference [107], and we refer the interested reader there for additional

details.

We begin by constructing a physical field theory with SO(n,Fp) gauge interactions.12

12Implicit in our discussion of this group is a choice of quadratic form on an n-dimensional vector space.
In fact, for p an odd prime, when n is odd, there is a single congruence class so there is no ambiguity, while
when n is even, there are two distinct choices which are often labelled as SO±(n,Fp), referring to the choice
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Consider the theory of an n-component vector of Fp valued scalar fields which we denote

as ϕA. We introduce a fixed symmetric bilinear form GAB = δAB. We can then consider

Lagrangians such as:

L =
1

2
GAB∂aϕ

A∂aϕB − λ
(
GABϕ

AϕB − ξ
)2
, (4.36)

with λ and ξ fixed parameters. We observe that this Lagrangian enjoys an SO(n,Fp) sym-

metry. By this, we mean the set of n×n matrices with entries in Fp such thatMTM = In×n,
the identity.

We now attempt to gauge this global symmetry. In characteristic zero, we would intro-

duce local gauge transformations, as designated by gx, so that for each point x ∈ Xspacetime,

we get an element in the symmetry group. We would like to attempt something similar in

characteristic p. The first complication we encounter is that all our fields are being repre-

sented as polynomials, so one might rightly ask whether this can be extended to the present

setting. Indeed, the proper framework for carrying this out is to consider a sheaf V such

that each stalk Vx admits a group action by SO(n,Fp). Then, we can speak of the condition

gTx gx = In×n. To get this into a more practical form recognizable to a physicist, we can also

consider the space of n × n matrices with entries in Fp(t), the field obtained by adjoining

the formal element t. Then, the condition g(u)Tg(u) = In×n specifies a set of n× n matrices

with entries in Fp(t) which satisfy the desired gauge transformation properties. With this in

place, we can now introduce a vector potential Va. Near a point x ∈ X, each component of

this vector is to be viewed as an element of so(n,Fp)⊗OX,x, namely we impose the condition

(Va)
T = −Va on our local polynomial expressions. Globally, of course, we should think of

∂a + Va as specifying a connection on our sheaf. We wish to consider gauge transformations

of the form:

Va 7→ g−1Vag + g−1∂ag, (4.37)

where each g is interpreted as above. The important point for us is that even though we

do not have the exponential map, we can still consider the group action of SO(n,Fp) on

so(n,Fp).

At this point, the discussion is so close to that of characteristic zero that we can simply

write down the standard action obtained from minimal coupling:

L =
1

2
GAB(∂aϕ

A + (Va)
A

A′ ϕ
A′
)(∂aϕB + (V a)B B′ ϕ

B′
)− λ

(
GABϕ

AϕB − ξ
)2
. (4.38)

We can also extend this to other characteristic p fields such as Fq, as per our discussion in

earlier sections.

A pleasant feature of the group SO(n,Fp) is that all entries are already valued in Fp, so

the characteristic p analog of “unitarity” is guaranteed. What about other gauge groups?

of signature of the quadratic form. When p = 2 similar considerations hold but one must instead reference
the Arf invariant of the quadratic form. We thank S. Cecotti for helpful comments on this point.
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Perhaps the most familiar in physics applications characteristic is the group U(n). To get

something like that in the present context, we need to have a suitable notion of hermitian

conjugation, as well as a suitable notion of an “imaginary number.”

The appropriate notion of complex conjugation in characteristic p is Frobenius conjuga-

tion. Working over a ground field Fq, there is a notion of Frobenius conjugation given by

Fq(ϕ) = ϕq which holds fixed all elements of Fq. We can then consider a quadratic extension

by an element îq specified by the condition:

Fq (̂iq) = −îq, (4.39)

which acts as the characteristic p analog of complex conjugation. We remark that this

element may not square to −1. For example, in F5, observe that 32 = −1 but that 3 ∈ F5

whereas î5 is not (since it is not invariant under Frobenius conjugation). To proceed more

systematically, we will instead seek out a root of the polynomial equation:

xq = −x, (4.40)

and we denote one such root by îq. Observe that by design, we have:

F (̂iq) = (̂iq)
q = −îq. (4.41)

Since îq is not invariant under Frobenius conjugation, it is not an element of Fq. Note,

however, that its square (̂iq)
2 is invariant, and is therefore an element of Fq.

We can now introduce an analog of hermitian conjugation as follows. Given an n × n
matrix M with entries in Fq (̂iq), write:

H = H1 + îqH2, (4.42)

with H1 and H2 some n× n matrices with entries in Fq. We define a daggering operation:

H† ≡ HT
1 − îqHT

2 . (4.43)

The group of unitary matrices is now defined by writing:

U(n,Fq (̂iq)) =
{
H ∈ GL

(
n,Fq (̂iq)

)
|H†H = In×n

}
. (4.44)

Now, in characteristic zero, we could start with the theory that enjoys an SO(2n) global

symmetry and consider gauging a subgroup such as U(n). In characteristic p, this is a bit

more subtle because the choice of hermitian conjugation now makes reference to a specific

choice of îq.
13

13In some cases, however, it is possible to proceed in a similar fashion to characteristic zero. To illustrate,
suppose that we fix our ground field to be Fp. We then make the further assumption that î2p = −1. Note
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We now build a Lagrangian which enjoys the global symmetry U(n,Fp(̂ip)). Consider a

theory of 2n Fp-valued scalars ϕ1, ..., ϕ2n. We construct the “complexified” combinations:

φA = ϕA + îqϕ
A+n (4.47)

φA = ϕA − îqϕA+n. (4.48)

In this case, we can introduce a suitable bilinear pairing GAB and write:

L = GAB(∂aφ
A + (Va)

A
A′ φ

A′
)(∂aφB −

(
V

a)B
B

′ φB′
)− λ

(
GABφ

AφB − ξ
)2
. (4.49)

Here, we have introduced a vector potential Va. Near a point x ∈ X, each component

of Va is to be viewed as an element of u(n,Fp(̂ip))⊗OX,x, namely we impose the condition

(Va)
† = −Va on our local polynomial expressions. Globally, of course, we should think of

∂a + Va as specifying a connection on our sheaf.

Turning next to the analog of the graviton, we have also mentioned that there is really

no issue in defining a symmetric bilinear form defined over each point of a scheme X. We

mainly need to impose a local equivalence relation:

hab ∼ hab + ∂aνb + ∂bνa, (4.50)

for ν ∈ T ∗X. Summing over all equivalence classes in this way provides the path integral

instruction for how to sum over the space of such “metrics.”

As a final amusing comment, note that the definition of standard Riemannian geometry

tensors only makes algebraic reference to the quantity hab and its derivatives. This would

seem to suggest that we can even borrow the standard actions for gravity, including higher

derivative interactions.

4.5 Further “Metric” Considerations

In the previous subsection we briefly mentioned the action for a non-linear sigma model,

which makes reference to a choice of symmetric bilinear form on both the spacetime and

that this restricts us to p = 3mod 4. To see why, write p = 3 + 4n. Next, observe that

− îp =
(̂
ip

)p
=
(̂
ip

)3+4n

=
(̂
ip

)3
, (4.45)

which implies:

− 1 =
(̂
ip

)2
. (4.46)

In this case, we can use the standard manipulations used in characteristic zero. This, however, imposes
restrictions on the prime p, a feature which we would like to avoid.
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target space. Recall that we took a general action of the form:

S =
∑
x∈X

√
dethhabGAB∂aϕ

A∂bϕ
B. (4.51)

where we have reproduced equation 4.31 for the convenience of the reader. In the above,

we have made reference to a “metric” on X, by which we mean a symmetric bilinear form

T ∗X ⊗ T ∗X → Fp. Now, taking the determinant of this bilinear form can be presented

locally in terms of a polynomial in the local coordinates. The somewhat unpleasant feature

of this presentation is that there is no guarantee that deth is actually a polynomial. Formally

speaking, nothing stops us from including such quantities. For example, we can simply take

the ring of functions and adjoin various finite extensions. On the other hand, doing so runs

a bit counter to the philosophy of only allowing quantities which have a suitable analytic

presentation.

To explain why this is still natural, even in the characteristic p setting, it is helpful to

return to the characteristic zero setting for X a Riemannian geometry. Now, in characteristic

zero, there is a clear justification for including the pre-factor
√
deth. This is because, in

terms of local coordinates on a manifold X, the volume form can be presented in terms of

this metric data:

dVolX = dmx
√
deth. (4.52)

Indeed, under a local coordinate transformation xa 7→ fa(x), the transformation of dx1 ∧
... ∧ dxm is precisely encoded in the corresponding Jacobian of ∂fa/∂xb.

What is the justification for including such a pre-factor in the characteristic p setting?

On the one hand, we are summing over a finite number of points, and an automorphism

of X will still produce the same collection of points. Moreover, the kinetic term hab∂aϕ∂bϕ

is already invariant under coordinate reparameterizations. Said differently, the Lagrangian

densities we have been discussing can be viewed as zero-forms in the local ring of functions,

namely, elements of Ω0
X(OX). At the level of homology groups, we also have the statement

of Serre duality over the ground field K [108]:

H i(X, E)×Hm−i(X, E∨ ⊗KX)→ K, (4.53)

so upon taking i = 0 and E = OX , we see there is a natural notion of “integration” which

will indeed return an element of K. In the case of K = C and X a Calabi-Yau space, the

corresponding section of Hm(X,KX) is just the volume form Ω ∧ Ω, with Ω a holomorphic

(m, 0)-form, which is uniquely specified (in the Calabi-Yau case) up to an overall non-zero

complex number.

More generally, then, we can still speak of introducing a volume form as given by a

section of Hm(X,KX), and this will canonically pair with the zero-form, as specified by a

Lagrangian. The choice of a particular section is our stand-in for “
√
deth”, and so in this

sense it is indeed appropriate to include this explicit factor, even in the characteristic p
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setting. Note that this also automatically answers another potentially troublesome point

about possibly taking the square-root of a local function in the characteristic p setting.

Rather than artificially introducing a notion of square-root, we are instead specifying a

particular choice of “volume-form”, viewed as an element of Ωm(X,KX). Varying the bilinear

h : T ∗X ⊗ T ∗X → K implicitly changes the element of Ωm(X,KX) we use, but all of this

is again specified without recourse to a particular field extension. The meaning of
√
deth is

then the scalar in Ω0(X,OX) dual to this volume-form.

A further comment here is that in some cases, the “volume” of X specified by h can end

up being zero. This is really just part of the price we pay for working in characteristic p.

For example, on the affine line over Fq, summing over all points with respect to the “flat

metric” where deth = 1 yields: ∑
x∈A1(Fq)

1 = pn = 0, (4.54)

with q = pn. On the other hand, on the punctured affine line where we remove the origin,

we instead get: ∑
x∈A×(Fq)

1 = pn − 1 = −1. (4.55)

Choosing a different value for
√
deth results in a different “volume”. For example, on the

affine line over Fq, we could instead take
√
deth = xq−1. In this case, we have xq−1 = 1 for

x ̸= 0, and so we get: ∑
x∈A1(Fq)

xq−1 =
∑

x∈A×(Fq)

xq−1 = pn − 1 = −1, (4.56)

namely we get a non-zero answer. Note that in this case,
√
deth vanishes at x = 0.

4.6 Statistical Formulation

Our emphasis here has been on formulating a notion of a path integral in which we explicitly

reference the usual complex phase factors which appear in quantum systems. Now, a common

approach to the study of path integrals in characteristic zero is to consider the analytic

continuation of the spacetime to a Euclidean signature theory, in which case we really have

a statistical field theory with a Boltzmann factor exp(−SE). One reason to do this is that in

the Euclidean setting, statistical field theories have potentially better convergence properties

(though notably gravity is an exception to this general claim).

So, it is reasonable to ask whether we can set up a Euclidean signature version of our

characteristic p action. At the level of specifying the “metric” and its Euclidean signature

analogs, there is no apparent issue in specifying a Euclidean signature action. In fact, it is

fruitful to consider the family of actions S[h] as a function of the symmetric bilinear form

h which has support on T ∗X ⊗ T ∗X. Then, we can view one choice of h as specifying our
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Lorentzian signature bilinear form, and another as specifying a Euclidean signature bilinear

form. So, at least at the level of specifying what we mean by an action in Euclidean signature,

there is no issue.14

The complications arise in specifying what we could mean by the Boltzmann factor

exp(−SE) in this setting.15 Indeed, our main setup has exploited the characters of the

additive group (Fp,+), and this requires that we evaluate quantities via a character χS such

as:

χS = exp

(
2πi

p
S

)
, (4.57)

with S the action evaluated on a particular field configuration. If we attempt to analytically

continue, we face the unpleasant feature that we are no longer constructing a well-defined

character.

A workaround is available, however, because χS takes values in C×. Consequently, we

can, up to a choice of branch cut, consider:

p

2πi
logχS = S +m (4.58)

for some integer m ∈ Z. Making a non-canonical choice of branch cut, we can set m = 0,

and then a Boltzmann factor can be specified for the Euclidean signature action as:

exp(−SE) ≡ exp
(
− p

2πi
logχSE

)
. (4.59)

Performing a path integral then involves summing over our space of morphisms.

A more formal way to state the same prescription is to first consider a primitive pth root

of unity:

ζ ≡ exp(2πi/p). (4.60)

Then, we observe that because ζp = 1, we expect any correlation function to be expressed

as a rational function in the ζ. We can write this as:

Correlator = (ζp)m

p−1∑
j=0

ajζ
j

p−1∑
j=0

bjζj
, (4.61)

for some coefficients aj, bj ∈ R. While it is tempting to restrict these coefficients to lie in the

integers, we should remain flexible, especially since we may need to regularize the infinite

14Another way to proceed is to view the Lagrangian density as a difference of kinetic and potential energy
densities, namely L = T −V . Then, we can can consider the Euclidean signature Lagrangian as LE = T +V ,
with the usual caveats about what we mean by time derivatives in the two settings.

15For various topological actions such as the Chern-Simons functional, the “Euclidean signature” version
still has a complex phase factor, but that case is too specialized for what we are discussing here.
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sums which appear in summing over all possible morphisms. Here, we have also allowed for

an overall factor of (ζp)m, although of course this is just unity when we make use of equation

(4.60). The previously discussed prescription of setting m = 0 to arrive at equation (4.59)

can be formalized by treating z = ζ as valued in C. Then, “all” we are doing is restricting to

the case where z is again restricting to real values of z = exp(−2π/p) instead. The different
choices of m just amount to an overall prefactor which is common to all correlators. As such,

we can work with a canonical choice by absorbing this into our definition of the partition

function.

Although rather natural at a formal level of manipulation, the process of analytically

continuing an entire function based on how it behaves over a finite set of values (namely the

primitive pth roots of unity) is of course somewhat suspicious. Indeed, it has by now been

appreciated in many places that even in characteristic zero, the process of analytic contin-

uation in the signature can introduce various subtleties in the path integral prescription,

see e.g., [109, 110] for recent discussion. At present, it would seem the best we could hope

for is that the prescription outlined above is the one appropriate for capturing a leading

order saddle point approximation, while contributions from subleading saddle points might

be intrinsically ambiguous. In principle the ambiguity is completely resolved because we

are dealing with a finite method for regulator quantum field theory correlators (much as in

lattice gauge theory), but the precise way in which this shows up in the Euclidean signature

formulation remains to be worked out.

It would be interesting to further investigate the convergence properties of this Euclidean

signature action, as well as the implicit dependence on a choice of analytic continuation

alluded to above.
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5 Hilbert Space Considerations

Up to now, our main emphasis has been on developing a path integral formalism for physical

theories in characteristic p. To a certain extent, this provides an operational definition of

our physical theory, because we can use this framework to compute correlation functions of

operators. Of course, what this leaves implicit is the actual structure of the Hilbert space in

question. Our aim in this subsection will be to explain how this additional physical structure

comes about in characteristic p.

To begin, we need to assume a notion of time in our characteristic p spacetime. For ease

of exposition, we will assume that our spacetime X factorizes as Xtime × Xspace, where we

view Xtime as the affine line or its projectivization, and Xspace as the spatial directions. This

can be generalized to fibrations of the form:

Xs −→ Xy
Xt

, (5.1)

in the obvious notation. In what follows we leave this further generalization implicit. To

emphasize this structure, we adopt the physics notation (t, us) = ua for local “spacetime”

coordinates of X.16 We can then still speak of rational morphisms such as:

ϕ : X 99K Y (5.2)

to some target space Y .

We now argue that there is a local notion of past, present and future as defined by the

local mode expansions in the Xt coordinate of our characteristic p spacetime.17 This will

again put the finger on the need for an infinite dimensional Hilbert space.

The main point is already conveyed in the one-dimensional setting where we have a single

scalar field on the affine line with the origin deleted:

ϕ : A× → A, (5.3)

over a fixed ground field Fq. We view the origin as the far past, and specify the far future

implicitly through the map u 7→ 1/F (u) = 1/up, i.e., the inverse Frobenius conjugate. All

of this makes sense on P1(Fq). In this way of thinking, we can view A×(Fq) as defining a

cylinder with A×(Fp) specifying the time coordinate, with 0 in the far past and∞ in the far

future. See figure 2 for a depiction.

16In particular, in this section, t and us refer to the formal variables which will appear in various polynomial
rings. We refer to the “evaluation points” on the spatial slice by xs.

17“Nor is it right to say there are three times: past, present and future. Perhaps it would be more correct
to say: there are three times: a present of things past, a present of things present, a present of things future.”
– Augustine of Hippo, Confessions.
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Figure 2: Depiction of the punctured affine line over A×(Fq) and the Frobenius invariant
subspace A×(Fp). We view A×(Fq) as specifying a cylinder with A×(Fp) playing the role
of a time coordinate. This picture is reinforced by the use of local Laurent series in which
positive degree terms describe modes propagating to the future, as indicated by ∞, and the
negative degree terms describe modes propagating to the past, as indicated by 0.

Our next task is to write down a mode expansion. This can be presented as a Laurent

series with coefficients ϕn in Fq:
18

ϕ =
∑
n∈Z

ϕnu
n ∈ Fq[u, u

−1]. (5.4)

Here, we allow ourselves to consider arbitrarily high degree poles. At this point it is helpful

to compare with the Laurent expansion we would write for a field ϕC with support on C,
which we would also write as:

ϕC =
∑

m,n∈Z

ϕmnz
mzn, (5.5)

in the obvious notation. Here, we observe that we have dependence on a local coordinate

z as well as its complex conjugate z. In the case of a characteristic p space, however, the

analog of complex conjugation just involves raising a variable to some prime power, so it is

indeed appropriate to continue working in terms of an expansion in a single formal variable

x.

Again turning to the characteristic zero setting, we observe that for a 2D theory specified

on a cylinder with coordinate z = exp(τ + iσ), the positive degree terms in the expansion

18But for now, we only allow a finite number of non-zero terms so that we can actually evaluate each
character map on quantities such as the path integral phase factor exp(iS[ϕ]/ℏ).
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correspond to positive frequency modes of the expansion, while the negative degree terms in

the expansion correlate with the negative frequency modes. Clearly, the same idea applies in

our expansion of line (5.4), and this provides a notion of modes in the past versus the future.

In more practical terms, we can focus on the subspace Fp ⊂ Fq, and pick a generator of the

additive group (Fp,+). Then, the number of compositions by this additive subgroup defines

a local notion of time ordering, which is in accord with our discussion of mode expansions.

We can now see how the above considerations can be generalized to rational maps ϕ :

X 99K Y . Namely, we first seek out the local Xt dependence, and perform a mode expansion

with respect to this coordinate. We then have a local definition of past and future, as

specified by local terms which have negative or positive degree.

With this in place, we can introduce various notions of a Hilbert space of states. To

motivate our proposal for the states in our system, we begin by recalling how things work

in the standard path integral formalism in the Archimedean setting. To this end, we pick

a fixed time slice, and specify the Hilbert space of states on this slice. Provided this is a

Cauchy surface, we then have a well-posed time evolution problem, and so we can specify

how states evolve in time in the Schrodinger picture, and one can of course equivalently work

in the Heisenberg picture. In the path integral, the choice of field profile on a spatial slice

amounts to prescribed boundary conditions, Φ(us) at some time slice specified, at say t = 0,

and we use this to specify a state |Φ(us)⟩.
In the characteristic p setting we can also clearly speak of morphisms just defined on the

spatial slice, namely given Φ : Xs 99K Y , we introduce a state |Φ : Xs 99K Y ⟩ . Clearly, this
provides (at least formally) a collection of states. On the other hand, since the notion of

“time evolution” in the characteristic p setting is less clear (we return to this point shortly),

it is also natural to consider a somewhat larger collection of morphisms which explicitly

reference the time coordinate. Along these lines, consider the Laurent expansion for a field

ϕ(t, us) near t = 0:

ϕ(t, us) =
∑
n∈Z

ϕn(us)t
n = ϕ≤(u) + ϕ>(u) (5.6)

where ϕ≤ encodes the terms with n ≤ 0 and ϕ> encodes all terms with n > 0. For n ≤
0, each of the ϕn(us) can be viewed as specifying additional “initial state data”. This

motivates speaking of a somewhat broader notion of physical state which is locally defined

by introducing:

|ϕ≤ : X 99K Y ⟩, (5.7)

namely we allow more general morphisms ϕ : X 99K Y , but in which we introduce an

equivalence relation on all terms with positive degree terms in t. Thus, we form a vector

space over C via the appropriate equivalence classes of morphisms ϕ≤.

At this point, it is helpful to comment on the relation between the states just specified,

and what happens if just consider the evaluation maps associated with these morphisms.

Along these lines, suppose that we forget about all the data of the morphism. Then, we get
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a point given by all the possible values of ϕ(u) by considering the corresponding evaluation

map evx=u(ϕ(u)) ≡ ϕ(x). Provided X and Y have a finite number of points, there is then a

“small” states of states |ϕ(x)⟩ which also spans a finite dimensional vector space over C.
Our discussion so far has mainly focused on constructing states, but to truly have a

satisfactory notion of a quantum mechanical theory, we also need a notion of an inner product

between states. We can calculate the overlap of field configurations in the “past and future”

provided we make the additional assumption that there is a distinguished point ti ∈ Xt

associated with an initial time, and tf ∈ Xt associated with a final time.19 We can then

prescribe fixed boundary conditions for our field at these two times, writing ϕ
(i)
≤ : X 99K Y

and ϕ
(f)
≤ : X 99K Y for these two morphisms. Observe that we can truncate this discussion

to just the non-polar terms to get a similar pairing for the states |Φ(us) : Xs 99K Y ⟩. With

this in place, we can simply define an overlap of states by evaluating the path integral in

characteristic p:

⟨ϕ(f)
≥ : X 99K Y |ϕ(i)

≤ : X 99K Y ⟩ =

ϕ
(f)
≥ :X99KY∫

ϕ
(i)
≤ :X99KY

[dϕ] exp(iS[ϕ]/ℏ), (5.8)

where here, the integral symbol is really an instruction to sum over all the rational mor-

phisms ϕ : X 99K Y with the prescribed boundary conditions at the marked points. We

comment here that in the standard path integral, it is more common to just specify a “spa-

tial morphism” via Φs : Xs 99K Y . Implicit in that approach, however, is that we have some

notion of “taking a limit” of ϕ(t, us) onto a fixed value of t. The above prescription contains

this, but can in principle also keep additional data, as tracked by the trajectory taken to

t→ ti and t→ tf .

The inner product just given is to be viewed as computing a suitable transition amplitude.

Of course, we can consider the special case where the action S[ϕ] = 0, and in this case

we just get the “standard” inner product on a Hilbert space. In evaluating this, we are

simply counting the number of interpolating morphisms which are compatible with the two

boundary conditions set by ϕ(i) and ϕ(f), and so is typically either zero or infinite.20 Note,

however, that we can regulate the infinite values by truncating to polynomials of fixed degree

(locally). Observe also that if we restrict to the “small” set of states where just record the

actual images of the morphism |ϕ(x)⟩, then the inner product just collapses to the expect

Kronecker delta, that is, ⟨a|b⟩ = δab.

We are now ready to propose a definition of our physical Hilbert space compatible with

our path integral formalism. In fact, there are various natural notions of a Hilbert space we

have already encountered, and we shall refer to them as the “BIG Hilbert space” HBIG, the

19In the punctured affine line example, ti = 0 and tf =∞.
20This already happens in the Archimedean setting where we typically encounter Dirac delta functionals

for overlaps of wave functionals.
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“big Hilbert space” Hbig, and the “small Hilbert space” Hsmall. The BIG Hilbert space is

spanned by the collection of states defined by rational morphisms ϕ≤ : X 99K Y between

two varieties, where we have an equivalence relation on any two morphisms which agree

on the non-positive degree terms in the local Laurent expansion. The big Hilbert space is

spanned by the collection of states defined by rational morphisms Φ : Xs 99K Y , where we

only track the spatial dependence of a field. Finally, in the small Hilbert space, we forget

both the temporal and spatial dependence, and just focus on the point set so obtained, i.e.,

the evaluation of ϕ(x). In the obvious notation, the Hilbert spaces are spanned by elements

of the form:

|ϕ≤ : X 99K Y ⟩ ∈ HBIG (5.9)

|Φ : Xs 99K Y ⟩ ∈ Hbig (5.10)

|evxs=us(Φ(us))⟩ ∈ Hsmall. (5.11)

We clearly have a set of a sequence of surjective projection maps:

HBIG → Hbig → Hsmall. (5.12)

Observe also that with the spanning elements in place, we can then construct general linear

combinations, with a norm topology dictated by the inner product.

Note that HBIG is always infinite dimensional (since it locally makes reference to polyno-

mials of unbounded degree). Provided dimXs > 0, we also have Hbig is infinite-dimensional.

On the other hand, the space Hsmall is substantially smaller, consisting of a finite number of

point set maps. Comparing with our discussion in section 3, we see that the Hilbert space

for the lattice approximation of a physical system is more akin to Hsmall. An additional

remark here is that in characteristic zero, one can often conflate these notions, but here we

must tread more carefully.

We emphasize here that since our mode expansions do make reference to the past and

future, there is also an implicit notion of (partial) time ordering, as referenced by the path

integral. Returning to the general contours of our proposal where we indicated how this

would work for the puncture affine line over Fq, where the Frobenius invariant subspace

Fp picks out a notion of a “time coordinate” with a past a 0 and a future at ∞. We can

also introduce an on ordering on the affine line as induced from the fact that the additive

group (Fp,+) can be generated by a single element. Of course, there can be more than one

such generator, and this means that there is some implicit choice being made in such a time

ordering.

In fact, one can make some choices to extend this notion of time ordering to the small

Hilbert space. For example, we can speak of repeatedly applying a given operator such as

exp
(

2πi
p
Ĥ
)
with Ĥ the Hamiltonian, and this composition rule builds up a local notion of

past and future. This composition of maps defines a notion of time evolution, much as one
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would have in iterations of a discretized dynamical system. Of course, at a pragmatic level

nothing stops us from just explicitly performing the requisite sum, so we have an operational

rule for how to evaluate correlation functions.

5.1 Special Case: Hbig(A1) vs Hsmall(A1)

We now consider a special case where Xs = A1 and Y = A1 and compare the big and

small Hilbert spaces Hbig(A1) and Hsmall(A1). In this case, we are considering morphisms

Φ : A1 → A1, and do not allow any further poles (i.e., polynomials rather than rational

functions). Similar considerations apply for more general varieties because we can always

glue together based on such affine patches anyway. Now, in this case, observe that our

morphisms are really just given by polynomials of the form:

|Φ : A1 → A1⟩ = |
∑
m≥0

ϕm(us)
m⟩ = |ϕ0, ..., ϕM , ...⟩, (5.13)

in the obvious notation. Observe in particular that we can build up an approximation of the

big Hilbert space by just truncating to polynomials with degree M or less, and we refer to

this as H(M)
big . There is clearly an inverse limit (see Appendix I for the relevant definitions):

Hbig = lim
←
H(M)

big , (5.14)

as specified by the inverse system defined by the appropriate surjections:

Hsmall ≃ H(0)
big ← H

(1)
big ← ...← H(M)

big ← ..., (5.15)

namely we just truncate to lower degree terms. In particular, we also have the isomorphism:

H(M)
big ≃ H

⊗M
small, (5.16)

namely we just record all the “qudits” associated with these coefficients. Using this, we can

specify a natural inner product by just using the one induced from the small Hilbert space.

This is compatible with our more general treatment in terms of path integral boundary

conditions since we have to specify how two spatially supported morphisms can interpolate

anyway.21 As already mentioned, since X and Y are varieties, this local construction clearly

extends to more general morphisms. In this way we visualize both Hbig and HBIG as built

up from suitable (inverse) limits of the small Hilbert space Hsmall.

21In the characteristic setting it is often customary to use L2 integrable functions as a natural space of
wave-functionals, e.g., for f, g ∈ L2(C) we can define our inner product via ⟨f |g⟩ =

∫
dµ(x)f∗(x)g(x) in

the obvious notation. In the characteristic p setting we can view the “matching of coefficients” as roughly
mimicking comparison of Fourier modes, a them we return to later in section 8.
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5.2 Operators

Much as we would in ordinary quantum mechanics, we can also specify operators which act

on the big Hilbert space.22 By way of example, we now fix a ground field Fq and assume

we have some basis of physical scalar fields ϕ(t, us) = ϕ(u) taking values in a vector bundle

E . Assume also that for each x ∈ X, we have a pairing vij : Vx × Vx → Fq which we can

interpret as a “pairing matrix”. This can be lifted in a natural way to a local function vij(u).

We can then construct a mapping of the form:

V × V → Fq → Fp (5.17)

(ϕ, β) 7→ vijϕ
ibj 7→ Tr(vijϕ

ibj), (5.18)

where in the last line we used the standard trace map for finite fields.

Just as in ordinary quantum mechanics, we wish to focus on operators which are uni-

tary. In our setting, the analogous treatment amounts to the condition that the operators

appearing in various exponentiated quantities are really valued in Fp, and not just some char-

acteristic p field. This restriction can be implemented in the above by focusing on Fp-valued

exponents, namely by working with operators such as:

exp

(
2πi

p
Tr(evu=xvij(u)ϕ

i(u)bj(u))

)
. (5.19)

Of course, in a standard physical theory, we expect there to be some redundancy in our

basis of states, since for example, we have a notion of time evolution of Cauchy slices. Some-

thing similar can be arranged in the characteristic p setting because we can also introduce

a Legendre transform of our Lagrangian, and consequently define a Hamiltonian operator.

Doing so, however, requires fixing a notion of a local time coordinate, and so we must make

some further assumptions on the geometry of X, as we noted above. Making these choices,

we can speak of operators specified at a fixed time in terms of the local Laurent expansion

of a field (as well as its time derivative) near the local time coordinate.

With this in place, we now explain how operators act on states of the big Hilbert space

given by spatial morphisms |Φ : Xs 99K V⟩.23 With respect to a fixed value of the time (i.e.,

where we expand around) t = t∗, we can consider the evaluation of a field Φ(us) = ϕ(t∗, us) as

valued in V , and a conjugate momentum Πj(us) = ∂tϕj(t∗, us) valued in V∗, the dual vector

space defined using the canonical pairing vij. In this way, we get corresponding “spatial

morphisms”, and this notion can be extended to the BIG Hilbert space by simply tracking

the appropriate polar terms.

Now, while it is of course tempting to consider the direct action of operators Φ̂ and Π̂ on

22One can similarly build up a collection of operators for the BIG Hilbert space, but we leave this implicit
in what follows.

23We specialize from a general target space Y to one such as V.
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our states, this is rather ill-defined, for the primary reason that these fields make reference to

coefficients in a finite field, whereas our Hilbert space of states is defined over the standard

complex numbers C. That being said, characters from finite fields to C still make sense,

so we can introduce an “exponentiated” version of such operators. It is actually simpler

to begin with the operator associated with momentum, where exponentiation produces a

translation. On the big Hilbert space we introduce an operation Rb as follows:

Rb ≡ exp

(
2πi

p
Π̂j(us)b

j(us)

)
, (5.20)

with the action on the spanning states of the big Hilbert space given by:

Rb|Φ : Xs 99K V⟩ = |(Φ + b) : Xs 99K V⟩, (5.21)

namely we have a “translation map” which shifts the spatial morphism Φ to Φ + b.

Consider next the action of Φ̂ on a state. Again, while one might wish to consider

the direct action of Φ̂ on states, the associated “eigenvalue” would be a polynomial in a

characteristic p field. One might also be tempted to consider the exponentiated action of

Φ̂, much as we did for translations in equation (5.21). Observe that in this case, however,

we expect to return an overall complex phase, whereas what we would instead get is an

exponentiated polynomial in a finite field. The resolution of this issue requires us to make

an additional choice as associated with evaluating at a particular point of Xs, which we

generically refer to as xs.
24 With this caveats in place, we can define an operator via its

action on the spatial morphism states:

Ta(xs) ≡ exp

(
2πi

p
evus=xs(Φ̂j(us)a

j(us))

)
(5.22)

with the action on the spanning states of the big Hilbert space given by:

Ta(xs)|Φ : Xs 99K V⟩ = exp

(
2πi

p
Tr((evus=xs(Φ̂j(us)a

j(us))

)
|Φ : Xs 99K V⟩. (5.23)

Functorially, we can also consider a more general operator Ta(•), where we leave the evalu-

ation on a given xs implicit.

Summarizing, then, we have introduced two families of operators Rb and Ta(•). Whereas

Ta(•) requires a further marked point to produce an actual map on the Hilbert space, Rb

does not require this choice. Observe also that if we project onto the small Hilbert space,

these distinctions no longer make an appearance. Continuing in this way, it should now be

clear that even though our physical fields are valued in characteristic p varieties, we are still

able to make sense of a physical Hilbert space over the characteristic zero field C.
24If ϕ is not valued in Fp, one must consider a further composition with an evaluation map Y → Fp to

produce a sensible answer.
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6 Quantum Error Correction

In the previous sections we showed that there is a path integral in characteristic p, and that

we can use this to build up various notions of a Hilbert space of states. With this in place,

we now turn the discussion around once more and show that our formulation of “physics

in characteristic p” has a natural interpretation in terms of structures found in the study

of quantum error correcting codes. Along these lines, we first recall that there is a well-

known use for finite fields as a means to construct examples of classical and quantum error

correcting codes. In this way one can view the present section as an attempt to build up

the previously encountered physical structures from a purely information theoretic starting

point.

More precisely, in this section we make use of the structure of classical codes generated

from algebraic curves over finite fields, as well as their extension to quantum error correcting

codes. To keep the discussion streamlined, we have deferred some standard definitions to

Appendix F which contains additional details. See figure 3 for a depiction of encoding via

schemes over finite fields.

To frame the discussion to follow, recall that in information theory, one is often concerned

with the transmission of information across a (possibly noisy) channel. There are various

ways to generalize the classical notions of information transmission to the quantum setting,

depending on whether one is interested in sending classical / quantum information over a

classical / quantum channel. For our purposes, it is enough to speak of an “input Hilbert

space” HA and an “output Hilbert space” HB. We can then consider (bounded) linear oper-

ators on each Hilbert space Lin(HA) and Lin(HB), which importantly, includes all possible

density matrices of a mixed quantum state. A linear map between these spaces:

Q : Lin(HA)→ Lin(HB), (6.1)

specifies a quantum channel when it is trace preserving.25

Roughly speaking, we can view our field theory path integral as summing over quantum

error correcting codes, with X and Y respectively viewed as the “source” and “target”.

Classically speaking, we view each morphism ϕ : X 99K Y as specifying a word, i.e., each

point in xi ∈ X serves as an input, and each target space point ϕ(xi) ∈ Y serves as the

encoded word. For this to carry over to the quantum setting, it is natural to introduce

auxiliary spaces X ′ and Y ′ and corresponding Hilbert spaces of morphisms HA = HX′99KX

and HB = HY ′99KY , where we can restrict to the case of HBIG, Hbig or Hsmall, as necessary.

Then, we can speak of channels as in line (6.1). A morphism ϕ : X 99K Y can then be used

to build an error correcting code.26

25One can weaken this to trace non-decreasing, since given such a map one can build a trace preserving
map by suitable amendments.

26One might also ask whether there are any canonical choices for forming a quantum channel. For our
present purposes we remain agnostic as to whether there is a preferred quantum channel since we leave
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Of course, this begs the question as to how to identify “natural” choices of X ′ and Y ′.

There are at least two choices which appear in many other contexts. For one, we can view

both X and Y as the target space of a string theory, with X ′ and Y ′ as the corresponding

worldsheet, much as we discussed in section 3:

X ′ 99K X 99K Y L99 Y ′. (6.2)

Alternatively, we can also set Y ′ = X and just deal with the composition of morphisms

of the form:

X ′ 99K X 99K Y. (6.3)

In this case, one could view X ′ as a worldsheet, or some other construct. In any case, we

shall assume the existence of the suitable spaces such that we can speak of a corresponding

quantum channel. With this in place, we can then turn to the construction of suitable error

correcting codes.

In what follows, we mainly focus on the details of how this works for the small Hilbert

space. This is a special case of the big Hilbert space where the spatial geometry Xs is trivial.

One can of course extend our considerations to this broader setting since the operations of

lines (5.21) and (5.23) specify generalized qudit operations. In the case of the small Hilbert

space construction, the details of X ′ and Y ′ matter less anyway because we simply keep the

“evaluation points” of the associated morphisms.

As a first step in this direction, suppose we consider a scalar field theory, where we take

our spacetime X to be P1(Fq), the projective line over the finite field Fq, and our physical

field is a rational map ϕ : X 99K Y with Y the affine line A1(Fq). We mark the “point at

infinity” in X and specify a prescribed pole structure at this location. Given this, we can

interpret X as a single timelike direction to construct a Hilbert space of states. This requires

us to also specify a notion of a canonical pairing vij which we implicitly use to raise and

lower indices. In the Heisenberg picture, we label these states as |ϕ⟩, where ϕ is interpreted

as taking values in Fq, where we introduce at some fixed time t∗ an operator Φi and its

conjugate momentum Πj = ∂tϕj|t=t∗ , with the properties that for a, b ∈ Fq we have:

exp

(
2πi

p
Tr(vija

iΦj)

)
|ϕ⟩ = exp

(
2πi

p
Tr(vija

iϕj)

)
|ϕ⟩ (6.4)

exp

(
2πi

p
bjΠj

)
|ϕ⟩ = |ϕ+ b⟩ , (6.5)

so we recognize that these are building up standard qudit error operations which we denote

as:

Eab = TaRb (6.6)

the source of “errors” in transmission generic. In the physical setting natural choices include (perhaps as
in [111, 112]) a suitable notion of coarse graining / renormalization (which does have a characteristic p
analog), but we leave the study of this question for future work.
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Figure 3: Depiction of how a spatial geometry furnishes a code, both in the classical and
quantum setting. The encoding of information is achieved via maps from a transmitter
(source) to a receiver (target space).

with:

Ta = exp

(
2πi

p
Tr(vija

iΦj)

)
, Rb = exp

(
2πi

p
bjΠj

)
, (6.7)

so in other words, we get a single qudit in the case of a quantum mechanical system defined

in this way.

We now start generalizing to more involved field theoretic examples. We first illustrate

show how the associated morphisms automatically produce classical error correcting codes,

and then explain how this extends to quantum error correcting codes.

Along these lines, we now take our spacetime X to be given by X = Xtime × Xspace,

where again we assume Xtime is a projective line, and Xspace is now taken to be a smooth

projective curve over the ground field Fq. In this case, we again take Y to be an affine

line, so we might as well view ϕ as an element of the line bundle L(G), with G a divisor

indicating the “points at infinity” of X. From what we have said above, we should also view

the a’s and b’s appearing in our discussion above as elements of the line bundle L(G). We

can now build a set of linear codes by considering n distinct points P1, ..., Pn of Xspace as well

as the divisor D = P1 + ...+ Pn. Evaluating at these points, we get the classical linear code

CL(D,G). Of course, in our path integral prescription we perform this evaluation, but in

a slightly more involved away, first constructing an evaluation map to the action, and then

mapping this to a character of our finite field. The point remains, however, that at least in

this simplified setting, each of our physical field configurations can be viewed as an element
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of the Riemann-Roch space.

Having seen how classical linear codes naturally emerge from this setting, we can ask

about the construction of quantum stabilizer codes. As reviewed in Appendix F below line

(F.34), one of the standard results is to actually specify an Fp linear subspace C ⊂ F2n
q which

is self-orthogonal with respect to the standard symplectic pairing. In the present context,

we consider the simplifying situation where C is actually an Fq-linear subspace of dimension

k. The precise idea is to specify the duals to the vectors a and b as elements (Φ(Pl); Π(Pl))

evaluated at the points in Xs specified by the divisor D = P1 + ... + Pn. Here, the index

l = 1, ..., n runs over the evaluation points, and we have left implicit the vector index. The

main thing we need to establish is that our phase space builds a self-orthogonal space with

respect to the standard symplectic pairing. For ease of exposition, we assume that we can

change basis so that the vij appearing earlier is just the identity matrix and we assume the

standard relation:

Π = ∂tΦ, (6.8)

in the obvious notation. Now, given two elements (Φ;Π) and (Φ′; Π′) of C, we observe that

the symplectic pairing is:

(Φ;Π) ∗s (Φ′; Π′) = Tr(Φ · Π′ − Π′ · Φ). (6.9)

But, via equation (6.8), we observe that Π′ = ∂tΦ
′ and Π = ∂tΦ. By inspection of equation

(6.9), the condition that the code is self-orthogonal with respect to ∗s now follows. Treating

these classical evaluation points as the span of possible values of the a and b appearing

in the CSS construction [113, 114], the theorem of reference [115] stated below line (F.34)

now gives us an [[n, n − k, d(C(s)\C)]]q quantum stabilizer code. To aid the reader, recall

that in such a code, the subscript “q” indicates we work with the “alphabet” Fq, the first

parameter indicates we are using n total qudits to encode the information provided by a

n − k-dimensional qudits. The last argument is a “distance”, indicating roughly speaking

how many errors can be corrected. We are here introducing a symplectic phase space C(s),

and specifying a Lagrangian subspace C (namely, a polarization). See Appendix F for further

discussion.

We note that from the perspective of symplectic geometry in characteristic zero, all that

we have done is exploit the appearance of a Lagrangian submanifold in the symplectic phase

space, i.e., a middle dimensional subspace which provides a canonical split between positions

Φ and conjugate momenta Π = ∂tΦ. The characteristic p analog of this statements provides

us with our construction of a self-orthogonal linear subspace.

The above statements also generalize to the case where we work with more general sorts

of classical codes. As mentioned in Appendix F near line (F.17), we can also consider

situations where we have a stable vector bundle E over a curve X. We will return to

examples of such structures in section 15. Recall from our discussion in Appendix F, a rank

r vector bundle allows us to specify a code subspace in Fn
Q, where Q = qr. While this is
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Figure 4: Depiction of the motion of the trajectory of a field Φt(xs) and its conjugate
momentum Πt(xs) in phase space as a function of the time coordinate in Xtime. This phase
space structure provides a self-orthogonal space with respect to the symplectic pairing ∗s,
and thus can generate a quantum stabilizer code.

not always an FQ linear space, it is Fq linear. Consequently, we can use the same sort of

“phase space argument” used above in the case of line bundles (where r = 1), we then get

an [[n, n− k, d]]Q quantum stabilizer code.

From the above considerations, we thus see a different physical interpretation of our

construction of field theories in characteristic p. In particular, we can also view our path

integral as performing a sum over possible classical codewords (after composing with evalua-

tion maps) and the resulting eigenspaces generated by the resulting quantum error correcting

codes define a basis of states in a physical Hilbert space. Observe that in constructing this

Hilbert space, even if we have roughly n physical points (as dictated by the order of the di-

visor D in Xs), the actual information content is instead “delocalized” across several points.

6.1 Quasi-Locality

There is one more layer of abstraction which naturally fits with our discussion, and suggests

how the structure of locality emerges from a somewhat more primitive construct. At a rough

level, we view this as stating that our formalism for defining path integrals in characteristic p

amounts to specifying a topos of quantum stabilizer codes. Indeed, there is some suggestive

overlap with potential uses of topoi in physics discussed in references [18–23] which might

be interesting to develop further. That being said, we will not attempt a match with the

considerations found there.
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To set the stage, we recall that one of the awkward features of algebraic geometry in

general is the rather course nature of the Zariski topology. In characteristic zero, one can

often supplement this by treating various spaces as real or complex analytic, but in working

with finite fields there is always an intrinsic discretization to the resulting system, a point

which we are actually attempting to exploit. Nevertheless, there is a sufficiently rich notion

of topology we can introduce which allows one to construct non-trivial cohomology theories.

We review some features of the resulting topologies in Appendix E. The main point is that

to get a suitable notion of “coverings by open sets” it is important to emphasize more the

collections of morphisms to a given scheme.

In our context, we have already seen that there is a sense in which the spacetime X as

well as the target space Y can be equipped with suitable topoi. From the perspective of

coding theory, we have also interpreted this as a general transmission problem in information

theory. From an ambitious standpoint, one might view the associated topologies as defining

a construct even more primitive than a Hilbert space, the latter only appearing after further

processing in the language of quantum error correcting codes.

Of course, if we ever wish to return to the world of observation, we must somehow

find a path back from characteristic p geometry to the more familiar terrain of physics in

characteristic zero. We turn to these issues later in part III.
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7 Scale Entanglement and an Emergent Bulk

In this section we show that there is a close analogy to renormalization in the characteristic

p setting. Moreover, we use this to to show that much as in the proposal of reference for

building up a bulk from a tensor network [8–10], this can be interpreted in terms of a higher-

dimensional “gravity dual”. The structure we introduce is reminiscent of similar observations

made in the p-adic setting, as in [11–13], and we return to this theme later in sections 18

and 19.

To begin, let us first explain the sense in which we even have “energy scales” in the

characteristic p setting. It is enough to illustrate the point by considering states of Hbig in

the special case where the space Xs = A1 (Fq), the affine line. Similar considerations hold

for more general choices of Xs, as well as for states of HBIG.

Working with the Hbig Hilbert space, we have states labelled by rational morphisms

Φ : A1(Fq) 99K A1 (Fq), and for ease of exposition we focus on morphisms as captured by

polynomials in Fq[u]:
27

Φ(u) =
M∑

m=0

Φmu
m. (7.1)

Now, in the Archimedean setting, we can interpret the u as functions such as exp(τ + iσ)),

with τ + iσ a local (holomorphic) coordinate on a 2D worldsheet. Higher powers of um for

m large can thus be viewed as higher frequency / shorter distance modes in the expansion.

Note also that this clearly extends to rational morphisms with support on the punctured

affine line A×(Fq) = Spec (Fq[u, u
−1]). One can also develop a more “Lorentz covariant”

treatment which focuses on the space of all rational morphisms X 99K Y by considering a

similar truncation in the degrees of the numerator and denominator of a rational function.

Putting these generalizations aside, observe that if we restrict to polynomials of degree

at mostM , then we are just filling out states in H(M)
big , and as we already remarked in section

5, there is an isomorphism H(M)
big ≃ H

⊗M
small, with each morphism just labelled by a tuple

|Φ0, ...,ΦM⟩. This tensor product automatically comes with a hierarchical ordering since we

can reference high scale / low scale coefficients in each Φm:

H(M)
big ≃ H

(m=0)
small ⊗H

(m=1)
small ⊗ ...⊗H

(m=M−1)
small ⊗H(m=M)

small . (7.2)

We also have various natural maps from H(M)
big to H(M−1)

big . Perhaps the simplest is just the

“projection map”:

H(M)
big → H

(M−1)
big (7.3)

|Φ0, ...,ΦM⟩ 7→ |Φ0, ...,ΦM−1⟩ , (7.4)

27The extension to rational morphisms of the form P (u)/Q(u) is similar, we simply truncate the degrees
of P and Q, and “coarse grain” by restricting these degrees further. One can also extend to power series
expressions, as is appropriate when taking the inverse limit to reach Hbig.
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in which we simply forget the last entry in the (M + 1)-tuple. Note also that we can also

embed H(M−1)
big → H(M)

big by just “padding by a zero” on ΦM = 0. More general isometries

are clearly also possible in which we simply consider any linear map W : H(M−1)
big → H(M)

big

such that28 W †W = IH(M−1)
big

and WW † is a projection map.

Now, given this structure, and especially the hierarchical ordering of tensor product

factors in line (7.2), there is a clear sense in which we can consider the entanglement of

states across different scales, much as in [116] (see also [111]). To illustrate, consider a density

matrix constructed from states in H(M)
big . Then, performing a partial trace over H(m=M)

small , we

reach a (possibly mixed) state of H(M−1)
big . Suppose then that we are given a (possibly mixed)

state ρ ∈ Lin(H(M)
big ). Following the standard steps in MERA / DMRG (see e.g., [117]), we

can perform a partial trace over H(m=M)
small to get a reduced density matrix ρ. We can then

follow this by an isometry to reembed inH(M)
big , i.e. we map ρ 7→ WρW †. Acting by a suitable

“disentangling” unitary operator U : H(M)
big → H

(M)
big , we can map ρ 7→ WρW † 7→ UWρW †U †,

we get a sequence of coarse grained density matrices. The main condition we aim to impose

is that the various correlation functions Tr(ρO1...Ok) for operators (computed using our

path integral) remain invariant under this coarse graining step, which in turn constrains our

choice of W and U . In this sense, we have an analog of renormalization / scale entanglement

in the characteristic p setting.

Observe that since M is now arbitrary, we see that our discussion extends (by taking an

inverse limit) to the entire big Hilbert space Hbig, and similar considerations also apply for

HBIG as well as the entire collection of rational morphisms X 99K Y used to set up our path

integral in the first place.

There is also a precise sense in which the procedure just outlined builds up a tree-like

structure which can be visualized as constructing a “bulk geometry”. This is a recurring

theme in recent holographic studies, and this includes, recent investigations of p-adic analogs

of the AdS/CFT correspondence, a topic we turn to in sections 18 and 19. To see how this

comes about when working with polynomials over Fq, we recall that each higher degree term

amounts to a further decision, informed by the lower degree terms. Along these lines, given

a polynomial:

Φ(u) =
M∑

m=0

Φmu
m, (7.5)

we begin by specifying one of q initial choices for Φ0, the coefficient of the u0 term. Having

made this choice, we move on to a choice of q possible values for Φ1. This builds up a

tree-like structure. Indeed, introducing an initial node for the monomial u0, we can attach

to it q distinct nodes indicating the q possible coefficients ω0, ..., ωq−1 ∈ Fq for the coefficient

Φ0. Then, for each of these nodes we attach q more nodes to the right to indicate a further

choice. Each element of Fq[u] can then be presented as a finite length path beginning at

28The hermitian conjugate is implicitly specified by the choice of inner product, something we discussed
in section 5.
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Figure 5: Depiction of the tree-like structure built up from polynomials over Fq[u]. Visualiz-
ing this as a decision tree, we read from left to right possible coefficients of degree um terms.
Similar considerations hold for coordinate rings / functions fields of more general varieties.

the u0 node and terminating after some number of steps. See figure 5 for a depiction of this

tree-like structure.29

This construction makes special reference to a starting node. One might ask whether this

persists in other cases. For example, working over the punctured affine line A×, the relevant
polynomials are represented as Fq[u, u

−1] which we can present as:

Φ(u) =
∑
|m|≤M

Φmu
m, (7.6)

namely we allow both positive and negative degree terms. In this case, the notion of coarse

graining is a bit more subtle, but it is still appropriate to view the low values of |m| as
specifying the IR and the large values of |m| as specifying the UV. In this case as well, then,

we see that there is still a preferred “initial node”.30

29In the p-adic setting it is convenient to view the links as specifying the coefficient of the “node to the
right” rather than the “node to the left”, but it is just a mild change of convention.

30It is tempting to generalize a bit further by constructing the Bruhat-Tits tree PGL2(Fq(u))/PGL2(Fq[u])
which has a number of formal similarities to the p-adic case (see sections 18, 19 and 20). In the present case,
however, it is less clear to us whether the resulting structure admits an interpretation in terms of coarse
graining.

57



7.1 Examples of Scale Entangled States

Before closing this section, let us give some explicit examples of states which exhibit scale

entanglement. Some of these examples are well-known in other contexts, but the additional

structure of polynomials over finite fields at least provides some novel ways to build / inter-

pret such examples.

As a warmup, we can start with the pure GHZ-state on M + 1 qudits:

ρGHZ(M+1) = |GHZ(M + 1)⟩ ⟨GHZ(M + 1)| , (7.7)

with:

|GHZ(M + 1)⟩ = 1√
2
|0, ..., 0⟩︸ ︷︷ ︸

M+1

+
1√
2
|1, ..., 1⟩︸ ︷︷ ︸

M+1

∈ H(M)
big . (7.8)

Note that this makes sense over any choice of ground field Fq. As polynomials over Fq, these

states are particularly natural, since:

|0, ..., 0⟩︸ ︷︷ ︸
M+1

= |0 ∈ Fq[u]⟩ , (7.9)

|1, ..., 1⟩︸ ︷︷ ︸
M+1

=
∣∣1 + ...+ uM ∈ Fq[u]

〉
. (7.10)

The resulting partial trace is a mixed state on M qudits (built from states of H(M−1)
big )

ρGHZ(M+1) = Tr(H(m=M)
small

)ρGHZ(M+1) =
1

2
|0, ..., 0⟩︸ ︷︷ ︸

M

⟨0, ..., 0|︸ ︷︷ ︸
M

+
1

2
|1, ..., 1⟩︸ ︷︷ ︸

M

⟨1, ..., 1|︸ ︷︷ ︸
M

. (7.11)

Similarly, the W-state is given by an appropriate sum over states defined by monomials:

|W(M + 1)⟩ = 1√
M + 1

M∑
m=0

|um ∈ Fq[u]⟩ ∈ H(M)
big , (7.12)

and this also produces a mixed state after performing a partial trace over H(m=M)
small .

One way to build new examples is to start with an irreducible polynomial Φ(u) ∈ Fq

which has a splitting field K/Fq. Labelling the roots as α1, ..., αl, one can consider the states

|u− αi ∈ K[u]⟩. There is a natural action of Gal(K/Fq) on this space of states, as given

by permutation of the roots. This extends to a linear action on all of Hbig(K) (i.e., the big

Hilbert space involving K[u] rather than Fq[u]). In terms of the qudit basis, each of these

is represented as |αj, 1, 0, ..., 0, ...⟩ ∈ Hbig(K). We now build a pure state ρ = |Ψ⟩ ⟨Ψ| which
has scale entanglement and which is also invariant under this Galois group action. To this
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end, introduce the state:

|Ψ⟩ = 1√
|Gal(K/Fq)|

∑
i

|u− αi ∈ K[u]⟩ ∈ Hbig. (7.13)

Performing a partial trace over the complement of H(m=0)
small , observe that:

ρ = Tr(
H(m=0)

small

)ρ = 1

|Gal(K/Fq)|
∑
i

|αi⟩ ⟨αi| ∈ Lin(H(m=0)
small ), (7.14)

and the entanglement entropy is just:

− Trρ log ρ = log |Gal(K/Fq)| . (7.15)

Similar considerations clearly hold for more general irreducible polynomials and field exten-

sions.
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8 Mode Expansions and Feynman Diagrams

In the previous sections we proceeded to increasing levels of abstraction to set up our general

formalism for how to define a physical system in characteristic p. In this section we show

how to perform some explicit computations in “practice,” showing how to implement some

explicit mode expansions and perform loop corrections in this setting.

For ease of exposition, we first focus on the simplest non-trivial case in which we have a

bosonic field theory, as specified by morphisms of the punctured affine line to the affine line:

ϕ : A× → A, (8.1)

as in our discussion of line (5.3). We assume the ground field is Fq, and so we can present a

physical field as an element of:

ϕ =
∑
n∈Z

ϕnu
n ∈ Fq[u, u

−1] ⊂ Fq[[u, u
−1]], (8.2)

namely only a finite number of the terms are ever non-zero.

One of the main reasons to introduce a mode expansion of this sort is that it can help

in analyzing the structure of interaction terms. In characteristic zero, we have the standard

properties of Fourier transforms, but we might ask whether any of this structure carries over

to the present setting. To aid us in our analysis, it is helpful to consider the function:

f(l) =
∑
x∈F×

q

xl, (8.3)

for l an integer. Unless l divides (q − 1), f is identically zero, and when l divides (q − 1),

f(l) = −1, namely:

f(l) =

{
0 if l ∤ (q − 1)

−1 if l|(q − 1)
, (8.4)

To see why, we recall that the multiplicative group F×q is actually a cyclic group of order

q − 1. Letting g denote a generator of this cyclic group, we can now write:

f(l) =
∑
x∈F×

q

xl =

q−1∑
i=1

gil. (8.5)

Consider next multiplying f(l) by gl. This yields:

glf(l) =

q−1∑
i=1

gl(i+1) =

q∑
i=2

gli = f(l), (8.6)
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where the final equality follows from the fact that we are still summing over all the elements

of F×q . Now, since g is a generator of F×q , we know that if l divides q−1, then gl = 1. On the

other hand, if l does not divide q−1, then gl ̸= 1. For equation (8.6) to hold when l ∤ (q−1)

means f(l) = 0, establishing the claim.

When l divides q−1, we observe that for all elements x ∈ Fq, we have the relation x
q = x,

and for all non-zero elements we have xq−1 = 1. Consequently, we have, in this case:

If l|(q − 1) : f(l) =
∑
x∈F×

q

xl = q − 1 = −1, (8.7)

since we are working in characteristic p.

Defining a mode expansion is now a relatively straightforward affair provided we can

capture all the values where f is non-zero. Given two expansions:

ϕ =
∑
n∈Z

ϕnu
n ∈ Fq[u, u

−1] (8.8)

ψ =
∑
n∈Z

ψnu
n ∈ Fq[u, u

−1], (8.9)

we observe that: ∑
x∈F×

q

evu=x(ϕψ) =
∑
m.n

− ϕmψnδ̂m+n, (8.10)

where we have introduced a modified Kronecker delta:

δ̂l = δ (l = 0 mod (q − 1)) . (8.11)

The usual statement of momentum conservation would have enforced l = 0, but in the setting

of finite fields, we must relax this condition and only enforce it mod q − 1.

We can also work out a Fourier decomposition of a quartic interaction term:∑
x∈F×

q

evu=xϕ
4 =

∑
x∈F×

q

evu=xϕ
4 =

∑
m,n,r,s

− ϕmϕnϕrϕsδ̂m+n+r+s. (8.12)

We can work out a similar mode expansion for the kinetic terms. It is actually technically

simpler (and well-motivated) to use the derivative Du ≡ u∂u:

Kin =
∑
x∈F×

q

κevu=x(Duϕ)
2 =

∑
m,n

κ
(
−mnϕmϕnδ̂m+n

)
. (8.13)

We say that that the use ofDu = u∂u is “well-motivated” because in “cylindrical coordinates”

this leads to a simpler structure for the resulting mode expansions, and the same holds true

61



here as well.31

At this point, we see that there is a complication coming from the fact that we only

appear to have momentum conservation mod q − 1. To study this issue more closely, we

observe that we can now construct the formal sums:

Φm = (...+ (m− (q − 1))ϕm−(q−1) +mϕm + (m+ (q − 1))ϕm+(q−1) + ...). (8.16)

Of course, the behavior of such an infinite sum is not fully defined since we do not have a

notion of convergence of this sum. We can, however, consider a regulated version of the sum

centered on m:

Φ(M,N)
m =

α=+N∑
α=−M

(m+ α(q − 1))ϕm+α(q−1) =
α=+N∑
α=−M

(m− α)ϕm+α(q−1). (8.17)

In the final equality we used the fact that we are working in characteristic p and q = 0 mod

p. We shall often specialize to the case M = N .

Now, to understand the structure of correlation functions in this theory, it is helpful to

adopt an alternative notation. With this in mind, we view our modes ϕm+α(q−1) as specified

by a matrix ϕα
m where the range of possible values are:

ϕα
m modes: m ∈ {1, ..., q − 1} and α ∈ Z. (8.18)

For brevity, we shall reference the α index via the vector notation
−→
ϕ m with the standard

dot product operation. In particular, we write:

α=+N∑
α=−M

(m− α)ϕm+α(q−1) =
−→µ m ·

−→
ϕ m (8.19)

31As a brief aside, the use of mode expansions allows us to address one item regarding the presentation of
the kinetic term, and the usage (or lack thereof) of “integration by parts”, where one equates terms such as
∂uϕ∂uϕ with −ϕ∂2

uϕ, as is customary in the characteristic zero setting. Here, we see that in matching the
modes in the characteristic p setting, we can make the substitutions:

(Duϕ)
2 = (u∂uϕ)

2 ∼ −ϕu∂u(u∂uϕ). (8.14)

The sign flip in this case has to do with matching the expansion modes; on the lefthand side we have terms
such as mnϕmϕnδ̂n+m, whereas on the righthand side we have terms such as n2ϕmϕnδ̂m+n. By the same
token, we can also perform an “integration by parts” for other choices of kinetic terms. For example, we
have:

(∂uϕ)
2 ∼ −ϕu∂u(u−1(∂uϕ)). (8.15)

Observe that in this case, we need to insert a factor of u−1 to properly match the mode expansions on the
two sides. This is acceptable provided we work on a space such as the punctured affine line A×, since then,
the inverse always exists. This also serves to illustrate some of the additional benefits of using the derivative
Du = u∂u. Some additional aspects of mode expansions and their connection to eigenfunctions of Du are
discussed in section 9 and 10.
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where:

µα
m = (m− α), for m = 1, ..., q − 1. (8.20)

We comment here that later on, we will often let the index m go “out of range” by being

negative. In such situations, we have ϕα
−m = ϕα

q−1−m and µα
−m = µα

q−1−m whenm = 1, ..., q−2,
and for m = q − 1 (the “zero mode”) we instead have: ϕα

−(q−1) = ϕα
q−1 and µα

−(q−1) = µα
q−1.

In this notation, the kinetic energy density of line (8.13) can be written as:

Kin =
∑
x∈F×

q

κevu=x(u∂uϕ)
2 =

∑
m,n

−κmnϕmϕnδ̂m+n =

q−1∑
m=1

−κ(−→µ m ·
−→
ϕ m)(

−→µ −m ·
−→
ϕ −m), (8.21)

namely, we now have a finite sum over the momentum index m = 1, ..., q − 1, but we still

have a regulated infinite sum over the α index. Here, we have introduced a slight abuse of

notation, since “−m” is not valued in {1, ..., q − 1}, but working mod q − 1, the meaning is

clear, and we shall find it helpful to permit this abuse in what follows. By inspection, we

note that this has the form of an outer product in the alpha index, and as such, the number

of propagating modes is vastly smaller than one might have a priori suspected.

8.1 Correlation Functions in a Gaussian Model

To illustrate this in more detail, let us now consider the evaluation of some correlation

functions in the Gaussian model. For ease of exposition, we assume that we have a 1D

model (i.e., just time derivatives) and that the ground field is Fp. The generalization to

more dimensions and other finite fields is straightforward enough. So, for now we specialize

to the field Fp and take our action to be:

S[ϕ] =
∑
x∈F×

p

κevu=x(Duϕ)
2 =

p−1∑
m=1

− κ(−→µ m ·
−→
ϕ m)(

−→µ −m ·
−→
ϕ −m). (8.22)

See Appendix G for a sample calculation of the partition function for a related model.

Our aim here will be to calculate some example correlation functions. We shall mainly

focus on correlation functions involving generalized vertex operators of the form:

OJ = exp

(
2πi

p

p−1∑
m=1

−→
J m ·

−→
ϕ m

)
(8.23)

for some specific choice of source vector
−→
J −m. In what follow we shall make some simplifying

choices for
−→
J −m since we are mainly interested in understanding how the propagating degrees

of freedom in the model interact with one another (i.e., the non-zero modes).

In carrying out the evaluation of correlation functions, it suffices to study the single
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expectation value:

⟨OJ⟩ =

∑
ϕ

exp(iS[ϕ]/ℏ)OJ∑
ϕ

exp(iS/ℏ)
, (8.24)

since we also have:

exp(iS[ϕ]/ℏ)OJ = exp(iS[ϕ, J ]/ℏ), (8.25)

with S[ϕ, J ] the action in the presence of a background source:

S[ϕ, J ] =

p−1∑
m=1

− κ(−→µ m ·
−→
ϕ m)(

−→µ −m ·
−→
ϕ −m) +

−→
J m ·

−→
ϕ m. (8.26)

Now, compared with the characteristic zero case, the treatment of zero modes is somewhat

more delicate. Indeed, in our kinetic term we can already see an issue because only the linear

combinations and−→µ m·
−→
ϕ m actually propagates. To analyze this structure, we therefore begin

by picking a convenient basis with which to expand our various modes.

Along these lines, our plan will be to simplify the path integral over a single
−→
ϕ m mode.

By inspection of the expression −→µ m ·
−→
ϕ m, we see that there is a sense in which the only

component of
−→
ϕ m which actually enters our path integral sum is associated with the com-

ponents of
−→
ϕ m parallel to −→µ m. In more detail, we begin by fixing a basis for our vector

space −→w (0),−→w (1), ...,−→w (l), ..., where formally speaking the index l extends over all the integers

(there is no penalty in re-indexing so that all indices here are positive integers). We can

always choose the −→w (l) such that −→w (l) · −→w (l) ̸= 0, with −→w (k) · −→w (l) = 0 for k ̸= l. To analyze

the structure of non-zero propagating degrees of freedom we split up our discussion into two

cases:

Case 1: −→µ m · −→µ m ̸= 0 (8.27)

Case 2: −→µ m · −→µ m = 0 (8.28)

Indeed, the main complication in projecting onto appropriate subspaces is that now, we can

have “null vectors”.

8.1.1 Case 1: −→µ m · −→µ m ̸= 0

Suppose first that −→µ m · −→µ m ̸= 0. In this case, it is helpful to set −→µ m = −→w (0)
m ≡ −→v (0)

m and

consider the collection of vectors:

−→v (l)
m = −→w (l)

m −

(−→w (0)
m · −→w (l)

m

−→w (0)
m · −→w (0)

m

)
−→w (0)

m for l ̸= 0. (8.29)
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Observe that the −→v (l)
m still form a basis and that −→µ m · −→v (l)

m = 0 for all l ̸= 0. We can expand

in terms of: −→
ϕ m = am

−→v (0)
m +

∑
l ̸=0

a(l)m
−→v (l)

m (8.30)

with:
−→µ m ·

−→
ϕ m = am. (8.31)

The range of values for a−m are the p distinct values in the finite field Fp. These are the

propogating degrees of freedom in the model.

8.1.2 Case 2: −→µ m · −→µ m = 0

Suppose next that −→µ m ·−→µ m = 0. In this case, we cannot resort to the analog of equation (??)

since it would involve division by −→µ m · −→µ m. Instead, we show that we can limit ourselves to

a single −→v (0)
m which is not orthogonal to −→µ m. To see why, suppose without loss of generality

that −→µ m · −→w (0)
m ̸= 0, with −→w (0)

m · −→w (l)
m = 0 for l ̸= 0. Set −→v (0)

m = −→w (0)
m . For l ̸= 0, we instead

set:

−→v (l)
m = −→w (l)

m −

(−→µ m · −→w (l)
m

−→µ m · −→w (0)
m

)
−→w (0)

m for l ̸= 0. (8.32)

By inspection, we have that −→µ m · −→w (l)
m = 0 for l ̸= 0. For future use, we also observe that

−→v (0)
m · −→v (l)

m = 0 for l ̸= 0 since −→w (0)
m · −→w (l)

m = 0 for l ̸= 0. So in this case there is an expasion

of the form: −→
ϕ m = am

−→ν (0)
m +

∑
l ̸=0

a(l)m
−→ν (l)

m , (8.33)

in which:
−→µ m ·

−→
ϕ m = am. (8.34)

The range of values for am are the p distinct values in the finite field Fp. These are the

propogating degrees of freedom in the model.

8.1.3 Computing Correlators

Returning to our task of computing ⟨OJ⟩, we now make the assumption that the defining

sources for these operators satisfy:

−→
J m = jm

−→v (0)
m (8.35)
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This is all that is really required, because only some of the
−→
ϕ ’s can propagate anyway.

Indeed, observe that:

−→
J m ·

−→
ϕ m =

(
jm
−→v (0)

m

)
·

(
am
−→ν (0)

m +
∑
l ̸=0

a(l)m
−→ν (l)

m

)
(8.36)

= jmam
(−→ν (0)

m · −→ν (0)
m

)
, (8.37)

where in the above, we used the fact that −→v (0)
m · −→v (l)

m = 0 for l ̸= 0.

We can then write the operator OJ as:

OJ = exp

(
2πi

p

p−1∑
m=1

jmam
(−→ν (0)

m · −→ν (0)
m

))
(8.38)

Turning next to exp(iS[ϕ]/ℏ)OJ , we have:

exp(iS[ϕ]/ℏ)OJ = exp

2πi

p

p−1∑
m=1


−κa−mam

(−→ν (0)
m · −→ν (0)

m

)(−→ν (0)
−m · −→ν

(0)
−m

)
+1

2
jmam

(−→ν (0)
m · −→ν (0)

m

)
+1

2
j−ma−m

(−→ν (0)
−m · −→ν

(0)
−m

)

 . (8.39)

Completing the square by making the substitution:

am 7→ am −
1

2κ

j−m
−→ν (0)

m · −→ν (0)
m

, (8.40)

and the expectation value of OJ is therefore:

⟨OJ⟩ = exp

(
2πi

p

p−1∑
m=1

− 1

4κ
jmj−m

)
(8.41)

= exp

(
2πi

p

p−1∑
m=1

− 1

4κ

( −→
J m · −→ν (0)

m

−→ν (0)
m · −→ν (0)

m

)(−→
J −m · −→ν (0)

−m
−→ν (0)
−m · −→ν

(0)
−m

))
. (8.42)

With this in place, we can in principle evaluate any number of correlation functions involving

operators ⟨Oω1 ...Oωk
⟩, simplying by setting J = ω1 + ...+ ωk.

Let us now attempt to make contact with the standard analysis in characteristic zero. So

long as we remember to exponentiate back to form characters, we can formally write down

the two-point function for modes of the scalar field theory by formally differentiating ⟨OJ⟩
with respect to Jα

m and Jβ
−m and then setting

−→
J m to zero. In particular, for modes where

66



we have −→µ m · −→µ m ̸= 0, we can set −→ν (0)
m = −→µ m, and we get:

〈
ϕα
mϕ

β
−m

〉
= − p

2πi

1

2κ

(
µα
m

−→µ m · −→µ m

)(
µβ
−m

−→µ −m · −→µ −m

)
. (8.43)

To proceed further, we now need to put the “out of range” values of −m back in range.

Since the modes are being indexed mod p− 1, this means µβ
−m = µβ

p−1−m = (p− 1−m− β).
It is also helpful to explicitly evaluate the regulated sum −→µ m · −→µ m centered on m:

−→µ m · −→µ m =
α=+N∑
α=−N

(m− α)2 = m2(2N + 1) +−2mN(N + 1) +
N(N + 1)(2N + 1)

3
. (8.44)

Observe that when N = p− 1mod p, the regulated sum collapses to −m2. This seems to be

a natural choice which matches with characteristic zero expectations, and so we adopt it in

what follows. Summarizing then, in this regulator we can now make the substitution:

−→µ m · −→µ m = m2. (8.45)

Consider next the regulated dot product for −→µ −m · −→µ −m. According to our indexing

prescription, we have to regulate −→µ p−1−m · −→µ p−1−m. Now, if simply apply the formula from

equation (8.45),one might want to simply equate this with −(m + 1)2. Observe, however,

that this choice of regulated dot product would vanish when m = −1 = p− 1, which in turn

would signal the presence of a singularity at specific momenta in the correlator of line (8.43).

In light of this, it seems more appropriate to instead consider an adjusted window for the

regulated sum in (8.44) where we write:

−→µ −m · −→µ −m =
α=+N−1∑
α=−N−1

(p− 1−m− α)2 =
α=+N∑
α=−N

(−m− α)2 = m2, (8.46)

which would not produce a spurious singularity in equation (8.43). Taking this at face value,

the two point function then evaluates to:

We can now evaluate our two point functions:〈
ϕα
mϕ

β
−m

〉
=

p

2πi

1

2κ

(m− α)(m+ β + 1)

m4
. (8.47)

In the special case where we set α = 0 and β = −1, we also have〈
ϕα=0
m ϕβ=−1

−m

〉
=

p

2πi

1

2κ

1

m2
, (8.48)

which is immediately recognizable compared with its characteristic zero analog.
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Figure 6: Depiction of some one loop diagrams. The internal loop involves a sum over modes
ϕα
m and ϕβ

−m, with m indexing a finite number of momentum modes and α, β a formally
infinite number of terms. The diagrams are evaluated by summing over all admissible values
of α, β and m. With respect to a well-motivated regulated sum over α and β, the one-loop
bubble diagram (left) vanishes, as well as the one-loop correction to the two-point function
in scalar ϕ4 theory. In both cases, we assume p ̸= 2, 3.

8.1.4 Bubbles and Zero Point Energies

Another curiosity of this setting is the structure of various loop corrections. Returning to

our expression for the two-point function (to avoid clutter we now set κ = 1/2):〈
ϕα
mϕ

β
−m

〉
=

p

2πi

1

2κ

(m− α)(m+ β + 1)

m4
. (8.49)

We can ask about the evaluation of this sum over the various momenta. On general grounds,

the summation over the m will generically involve expressions such as:

p−1∑
m=1

1

m2
,

p−1∑
m=1

1

m3
,

p−1∑
m=1

1

m4
. (8.50)

But, when p is a prime greater than 5, our previous discussion near line (8.4) established

that such sums actually vanishes! So, the corresponding bubble diagrams / contributions to

the cosmological constant of the system actually vanish. See figure 6 for a depiction of a one

loop bubble diagram.

Similar considerations hold in the higher-dimensional setting as well. While we leave

a full treatment to future work, consider the extension of our sum on momenta such as

provided by a k-component vector with entries ma for a = 1, ..., k. Assume also a diagonal

non-degenerate quadratic form hab, and we reference the “norm” as:

∥m∥2 = habm
amb. (8.51)

We now show via induction on k that the sum over 1/ ∥m∥2 for all non-zero values of ∥m∥2
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also vanishes.

We have already established the claim for k = 1, so suppose it holds for some value of k.

To indicate this, we append a subscript to our norm-squared, writing ∥m∥2k in the obvious

way. Consider next extending our quadratic form by an additional variable. Then, we can

write: ∑
∥m∥2k+1 ̸=0

1

∥m∥2k+1

=
∑

∥m∥2k+1 ̸=0

1

hk+1,k+1(m(k+1))2 + ∥m∥2k
. (8.52)

We now break up the sum into those contributions where m(k+1) = 0, and those for which

m(k+1) ̸= 0. In the contribution from m(k+1) = 0, though, we are just performing the sum

over 1/ ∥m∥2k, and via our inductive step we already know this vanishes. So, it is enough to

assume that m(k+1) ̸= 0. In this case, we are free to divide by this quantity to write:

∑
∥m∥2k+1 ̸=0

1

∥m∥2k+1

=

p−1∑
m(k+1)=1

1

(m(k+1))
2

∑
∥m∥2k+(m(k+1))

2
hk+1,k+1 ̸=0

1

hk+1,k+1 +
1

(m(k+1))
2 ∥m∥2k

,

(8.53)

in the obvious notation. Next, rescale all the entries of the remaining k-component vector by

m(k+1). We can do this because we are summing over all such k-component vectors anyway.

Then, we can write our sum as:

∑
∥m∥2k+1 ̸=0

1

∥m∥2k+1

=

p−1∑
m(k+1)=1

1

(m(k+1))
2

∑
∥m∥2k+hk+1,k+1 ̸=0

1

hk+1,k+1 + ∥m∥2k
. (8.54)

But now the sum over 1/
(
m(k+1)

)2
vanishes, and the claim is established. Clearly, a similar

set of manipulations holds in similar situations.

By the same token, a number of other sums of this sort also identically vanish. For

example, we observe that: ∑
∥m∥2 ̸=0

1

(∥m∥2)l
= 0 if (p− 1) ∤ 2l (8.55)

∑
∥m∥2 ̸=0

1

(∥m∥2)l
= −1 if (p− 1)|2l. (8.56)

where in the above, we have assumed p ̸= 2, 3.

So, we see that the loop corrections in such theories are still non-trivial but that in many

cases there are signicant simplifications.
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8.2 Loop Corrections in ϕ4 Theory

To further investigate the structure of loop corrections in this setting, we now turn the

canonical example of massless ϕ4 theory in characteristic p ̸= 2, 3, 5. Our Lagrangian is

given by:

L = T − V (8.57)

where the kinetic energy functional is:32

T =
1

2

(
(Dtϕ)

2 − (Dxϕ)
2 − (Dyϕ)

2 − (Dzϕ)
2
)

and V =
λ

4!
ϕ4, (8.58)

in the obvious notation. We denote the four-momentum as ma.

Consider first the structure of the two-point function. In the free field approximation the

two-point function in momentum space is:〈
ϕα
mϕ

β
−m

〉
free

= − p

2πi

(ma − αa)(πa −ma − βa)
(mama)

2 , (8.59)

where πa = (p−1, p−1, p−1, p−1) = (−1,−1,−1,−1) is a four-component vector associated

with the “negative momentum”. Let us calculate the one-loop correction to this propagator.

Observe, however, that this leads to loop corrections of the form:∑
mama ̸=0

1

(mama)l
= 0, (8.60)

and so the one-loop diagram actually contributes nothing.

Consider next the structure of the two-point function. In the free field approximation

the four-point function in momentum space is:

〈
ϕα
mϕ

β
nϕ

γ
rϕ

δ
s

〉
free

= −2πi

p
λδ̂m+n+r+s. (8.61)

Again, we emphasize that this expression is really a shorthand for insertion into exponenti-

ated physical fields. The reason for this is simply that this expression with 1/p is meaningless

in characteristic p. Additionally, we remark here that the sense in which we can speak of a

sensible perturbation theory rests on expanding (in characteristic zero) the ratio λ/p. So,

if p is indeed a large prime, such an expansion does still seem to make sense, so long as we

treat all operator correlation functions as characters valued in C. Another point of view is

that we can think of these correlation functions as specifying a formal power series in the

coupling constants of the Lagrangian (much as we would in the standard characteristic zero

setting). Then, we are free to truncate this power series and evaluate at some finite degree

values. Interpreting this as the logarithm of a suitably defined character with values in C,
32Here, t, x, y, z should be viewed as specifying local coordinates, i.e., not specific points in the variety.
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the convergence (or lack thereof) of the power series then follows from the induced metric

properties on C. See figure 6 for a depiction of the one loop correction to the two-point

function.

Let us now turn to the one-loop correction to the coupling λ. By inspection, this boils

down to evaluation of the following sort over momentum sum encountered in equation (8.55).

The relevant momentum sum is obtained by setting all external momenta to zero. An example

of such a contribution is:

I =
∑

mama ̸=0

∑
α,β,γ,δ

(ma − αa)(πa −ma − βa)(mb − γb)(πb −mb − δa)
(mama)

2 (mbmb)
2 = 0, (8.62)

where the last equality follows from similar considerations to those already presented.

More generally, we can ask about the loop corrections to four-point scattering amplitudes,

with n a momentum transfer scale. An example of such a contribution is:

I(n) =
∑

mama ̸=0

∑
α,β,γ,δ

(ma − αa)(πa −ma − βa)(nb +mb − γb)(πb − nb −mb − δa)
(mama)

2 ((nb +mb)(nb +mb))2
, (8.63)

where we observe that setting n = 0 reduces us to the case of equation (8.62). In this case,

the external momenta are non-zero, which in turn makes the contribution to various loop

corrections more intricate. A priori, it is not clear to us that this loop correction vanishes.

This is all to the good because it indicates that perhaps an analog of the optical theorem

persists in characteristic p.

8.3 Effective Potential and Higher Dimension Operators

More generally, we can study the structure of higher dimension operators in such field the-

ories. Again by way of example, we focus on the effective potential for the quantum field

theory of a a single scalar field ϕ.

Now, in characteristic zero, we often view a potential of a low energy effective as specified

by a formal power series of the form:

V (ϕ) =
∑
m

Vmϕ
m ∈ R[[ϕ]]. (8.64)

We would like to understand the analogous structure in characteristic p. We view the

effective potential as a formal power series with (for ϕ a morphism of a variety over Fp)

coefficients in Fp. All of this can be extended to other finite fields by including suitable

Frobenius conjugate terms, but for ease of exposition we focus on the simplest non-trivial

case:

V (ϕ) =
∑
m

Vmϕ
m ∈ Fp[[ϕ]]. (8.65)
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Figure 7: Example of a one loop contribution to a sextic interaction V6ϕ
6 in the effective

potential of a physical theory as generated in ϕ4 theory. In the case where the field is
massless, this correction vanishes in the characteristic p setting, but is generically non-zero
when the field is massive.

As a first comment, such corrections can indeed be generated by radiative corrections.

The example of ϕ4 theory is sufficient to illustrate the main points. On general grounds,

we expect to generate all possible terms in the effective action compatible with the Z/2Z
symmetry associated with ϕ 7→ −ϕ. As an illustrative example, consider possible loop

corrections which might generate a ϕ6 term (see figure 7). We observe that at least in the

case where ϕ is exactly massless, our previous discussion of loop corrections shows that this

contribution actually vanishes. When ϕ is massive (i.e., there is a quadratic term in the

effective potential) then we do not observe such an exact cancellation, so in general the

structure of the effective potential is indeed non-trivial.

Physically, we are accustomed to thinking of the values of V at different points in space-

time Xspacetime. Doing so, we observe the feature that for any truncated form of our effective

potential, V will take values in a finite field. Another way to capture this feature is to

observe that for ϕ ∈ Fp, we have the identity ϕp = ϕ. This is very much in tune with the

structure of the Hilbert space discussed in section 5.

Indeed, if we evaluate the physical potential V (ϕ) at a given point of Xspacetime, then

high degree terms in this polynomial in ϕ are in some sense redundant. All of the physical

information is already contained in the expansion:

V (ϕ) = V0 + V1ϕ+ ...+ Vp−1ϕ
p−1, (8.66)

so provided we only evaluate on Xspacetime, without loss of generality we can simply work

solely in terms of this finite set of coefficients rather than the infinite set which is customary

in effective field theory. Similar considerations hold for the kinetic term and any higher
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derivative term of fixed degree.33 One consequence of this is that there is indeed some

level of redundancy in higher order coefficients. This is in line with expectations on the

constraints of a low energy effective field theory indicated in various Swampland conjectures

(see e.g., [3, 118]). One can, of course, always include such higher degree terms, and this is

useful in coming up with a better approximation scheme. It is, however, strictly speaking

redundant information if we focus on just the structure of the possible values the effective

potential can obtain.

On the other hand, the effective potential also makes implicit reference to an infinite

series of coefficients Vi. In the broader setting of the BIG and big Hilbert spaces HBIG and

Hbig, we thus see an important physical consequence: Even though the potential can only

ever attain a finite set of values, there is a strictly infinite set of possibilities for the power

series in the effective potential. That being said, it remains unclear to us that an observer

could ever access the full structure of these coefficients. The reason for this is that in any

experiment, a measurement would need to report a value of the effective potential at specified

points in spacetime.

Higher derivative corrections, however, do appear to be sensitive to arbitrarily high degree

terms in the path integral. As we have already alluded to previously, this is one of the

distinctions between other approaches to discretization, such as those associated with lattice

approximations to a quantum field theory. To see why, recall that the rth Hasse derivative

of a monomial un is given by:

D(r)um =
m!

r!(m− r)!
um−r. (8.67)

when 0 ≤ r ≤ m, and otherwise vanishes. As an extreme example, consider taking n = p

and r = p. In this case, we have D(p)up = 1. So, if we have a polynomial such as:

ϕ(u) = ϕ0 + ϕ1u
1 + ϕ2u

2 + ...+ ϕpu
p + ..., (8.68)

then the pth Hasse derivative evaluated at u = 0 will return the coefficient ϕp. In a general

effective action where we include arbitrary numbers of derivatives, we thus see that we cannot

simply truncate to a finite number of coefficients. Of course, if we specialize our action so

that it has only a finite number of derivatives, then we can again truncate, but from the

general reasoning of effective field theory, there is no need to do so. In fact, we have also seen

some crude analogs of unitarity in this setting. In the standard characteristic zero setting,

such higher derivative interaction terms are necessary to ensure that the effective action

remains unitary. This suggests that in our setting as well, one ought not to simply ignore

such contributions. It would be interesting to explore the structure of such contributions

33However, we should also note that in a general effective action, there is an infinite sequence of higher
derivative terms. These terms probe the structure of the higher degree terms of a given field configuration,
and distinguishes our approach from the standard lattice approximation. We comment on this further on in
this section.

73



and their impact on the structure of correlation functions.

8.4 Winding Modes and Double Fields

One of the items observed previously is that the structure of mode expansions in character-

istic p has a somewhat different flavor than its characteristic zero analogs. In particular, we

observe that in terms of the evaluation map on a finite field, there is a sense in which the

actual value of the field has a large amount of redundancy, as evidenced by the appearance

in ϕα
m of the momentum modes m = 1, ..., q− 1 and the additional mode structure captured

by α ∈ Z.
To further explore this redundancy in mode expansions, we now study the structure of

winding modes in some simple examples. So, whereas in previous sections we considered

maps from the punctured disk to the affine line, here we will instead focus on some more

“topological aspects” of possible morphisms, as accounted for by πét
1 (X, x), the étale funda-

mental group of a scheme X at a geometric point x. See Appendix J for a brief discussion

of the étale fundamental group.

To make things concrete, let us briefly revisit our general discussion of mode expansions.

We have characterized a field as locally described by a power series expansion:34

ϕ =
∑
n∈Z

ϕnu
n ∈ Fq[[u, u

−1]] (8.69)

Now, as we have already remarked, owing to the qth Frobenius map u 7→ uq leaving fixed all

points of Fq, and since we will eventually evaluate on such points, it is helpful to perform a

further decomposition as:

ϕ =
∑
n∈Z

ϕnu
n =

∑
w∈Z

q−1∑
m=0

ϕm,wu
m+wq. (8.70)

We remark that this is quite similar to the previously discussed mode expansion, but that

here the mode constraint is specified mod q rather than mod q − 1. We have also written w

to indicate that we want to view this as a “winding number” and m to indicate that we are

also dealing with a discretized momentum.

To explain the sense in which we are dealing with a winding mode, we now take the

evaluation space to be points of the projective line P1(Fq). We observe that in this case,

the map x 7→ xq leaves invariant the subscheme P1(Fq). In particular, we are now free to

consider morphisms of the form:

ϕ : P1(Fq)→ P1(Fq), (8.71)

34Here we do not demand that the expansion truncates at some degree. Of course, if we wish to evaluate
the action we will ultimately need to truncate these expressions as in previous sections.
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which we can view as factoring through some projective system of morphisms P1(Fqi) →
P1(Fq). Now, the point for us is that this is precisely the setup where we can fruitfully

discuss winding maps, as captured by πét
1 (P1(Fq), x) ≃ Gal(Fq/Fq) ≃ Ẑ, where the profinite

completion of the integers is just generated by the Frobenius map u 7→ uq, so in this sense,

it really is appropriate to view the mode numbers w of line (8.70) as winding modes.

Now, in the context of string theory, the appearance of winding modes of course motivates

a further question as to whether there is a sense in which momentum and winding modes

can be interchanged on the target space. Here, we can already see one difficulty because

whereas the set of winding numbers is formally infinite, the number of possible momenta is

a finite set. Nevertheless, in the spirit of double field theory (see e.g. [119–121] and [122] for

a review) we can consider a related mode expansion:

Φ =
∑
m,w

Φm,wu
mvw ∈ Fq[[u, v, u

−1, v−1]]. (8.72)

We can then consider the restriction v = uq, or alternatively the restriction u = vq. Per-

forming such a restriction, we that our expansion collapses back to either the presentation in

terms of an expansion with local coordinate u or the T-dual coordinate v. In this situation,

the roles of momentum and winding are clearly interchanged. Indeed, we can also consider

a Lagrangian on the enlarged space, as given by:

L = κ
(
(∂uΦ)

2 − (∂vΦ)
2
)
+ Frobenius Conjugates, (8.73)

and we observe that there is an SO(1, 1) rotation amongst the local u and v coordinates. At

the moment, this choice of relative sign seems like more of a natural possible choice rather

than anything which is “forced” by consistency. Nevertheless, we can now see that maps

from the worldsheet P1(Fq) to the target space P1(Fq) do have a semblance of T-duality.
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9 Green’s Function on the Cylinder

In the previous section we encountered some examples of mode expansions, and evaluated

some correlation functions. In the context of a standard characteristic zero field theory, a

perhaps more natural starting point would have been to first analyze the classical equations

of motion, and then expand in small fluctuations to evaluate corresponding correlation func-

tions. This is more difficult in the characteristic p setting in part because many seemingly

simple differential equations no longer make sense in this generalized setting. To illustrate

the difficulties, consider the differential equation on the affine line A1:

∂vϕ(v) = λϕ(v), (9.1)

where we fix a choice of field K and take ϕ(v) ∈ K[[v, v−1]] and take λ ∈ K. For K = R or

C (as well as a p-adic field) we have the exponential function power series:

exp(v) =
∑
n≥0

vn

n!
, (9.2)

and then the solution would be given by taking ϕ(v) = exp(λv). In the case of a characteristic

p field, this will not work, because 1/n! makes no sense for n ≥ p. On the other hand, in our

discussion of mode expansions, we saw that on the cylinder, i.e., the punctured affine line

A×, it is natural to instead consider the differential operator:

Du = u
∂

∂u
, (9.3)

with u a local coordinate on A×. In the case of K = R or C, we can relate the local

coordinate u with v via: exp(v) = u. In particular, this provides us with a way to possibly

make sense of exp(λv) by instead working with uλ. We can make sense of such an expression

over Fp if we make the further assumption that λ ∈ Fp. This follows because for any λ, we

can consider λ̃ a lift to Z such that the mod p reduction of λ̃ coincides with λ. So, we are

free to write:

λ̃ = r +mp, (9.4)

where r ∈ {0, ..., p − 1} and m ∈ Z. Now, at this point we see that our solution to the

differential equation takes the form:

ϕ(u) = ur+mp, (9.5)

which solves the equation:

Duϕ(u) = λϕ(u). (9.6)
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So, we get an infinite number of formal solutions, namely we can write:

ϕ(u) = ur
∑
m

ϕmu
mp, (9.7)

in the obvious notation. Note also that the same solution also works for the differential

euqation:35

D2
uϕ(u) = λ2ϕ(u). (9.8)

Consider next the case where λ ∈ Fq. Here we face the unpleasant feature that there will

in general exist no lift of λ to an integer. As such, the interpretation of “uλ” is unclear, at

least to us. A similar workaround to what we already used is to consider introducing another

variable “‘U = uλ”, and with it a corresponding differential operator:

DU = U
∂

∂U
=

1

λ
u
∂

∂u
=

1

λ
Du. (9.9)

In this case, we can work with expressions built from U rather than u, and in this case we

observe that equation (9.8) instead becomes:

D2
Uϕ(U) = ϕ(U), (9.10)

so at least formally, it suffices to restrict to the case of λ ∈ Fp.

With this in mind, we now attempt to solve the classical source problem in characteristic

p. More precisely, introduce J(u) ∈ Fp[[u, u
−1]]. Our aim will be to solve the equation:

D2
uϕ(u) = J(u). (9.11)

To begin, introduce explicit power series expressions:

ϕ(u) =
∑
m

ϕmu
m and J(u) =

∑
m

Jmu
m. (9.12)

Then, we have, mode by mode:

m2ϕm = Jm. (9.13)

So, for m ̸= 0mod p, we can invert to find an explicit zero mode:

ϕm =
1

m2
Jm for m ̸= 0mod p. (9.14)

In the case of m = 0mod p, we cannot find a solution unless we assume Jm = 0 for such

modes.

35One might refer to this as a harmonic oscillator equation since the notion of λ2 positive or negative is
meaningless in characteristic p. Observe, however, the existence / absence of a square root in Fp for −λ2

depends on our choice of p.
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10 Symmetries and Currents

Our discussion in the previous sections has laid out a general prescription for defining physics

over characteristic p geometries. One aspect of our construction involves the analysis of

correlation functions, and in principle, we can now proceed to evaluate examples of such

quantities, much as we already did in section 8. Along these lines, it is well-appreciated

that symmetries of a quantum system can provide important constraints on the structure of

correlation functions. Our aim in this section will be to carry out a similar analysis in the

characteristic p setting.

We shall refer to a “symmetry of the action” as any transformation either of the source

X or target Y which leaves the character exp(iS/ℏ) invariant. In the quantum setting, it

can often happen that a symmetry may nevertheless fail to leave the associated partition

function invariant (as obtained from summing over all possible field configurations), and in

this case, we refer to the symmetry as being “anomalous”. We shall for the most part focus

on an essentially classical analysis in the sense that our discussion focuses on invariance of

exp(iS/ℏ).
Recall that in the standard characteristic zero setting, we can associate conserved currents

with “continuous” symmetries. The main idea is to first fix a group action on the source

X as well as the fields, and then peform a transformation which we label as ϕ 7→ ϕg in

the obvious notation. In many cases of interest, this can be realized in terms of a linear

transformation on a basis of fields ϕi, for example we can write ϕi 7→ Ri
jϕ

j. Indeed, we

have already explained how gauge fields can be introduced in this setting, so it might indeed

seem roundabout to now backtrack to discuss currents (which in standard treatments of

field theory are often introduced first). One reason to defer our treatment to later is that

the proper interpretation of symmetry currents requires some additional elements such as

explicit mode expansions. Another reason has to do with the fact that in the characteristic

p setting, we will also be able to associate a conserved current to discrete symmetries. At

some level, this is not all that surprising, since our action principle automatically discretizes

all physical quantities anyway. On the other hand, it allows us to provide a rather uniform

treatment of different kinds of symmetries and gauge fields, some of which are a bit more

cumbersome to construct in the continuum field theory setting. Let us also mention that the

notion of assigning a conserved current to a discrete symmetries has recently been developed

in the context of lattice quantum field theories [123].36

To begin, then, let us formalize the notion of a current in our setting. For ease of

exposition, we work over Fq and consider a physical field ϕ : X 99K Y , and assume the

existence of automorphisms Aut(X) and Aut(Y ) which respectively act on the source and

target. Our goal will be to construct the corresponding current associated with a symmetry

of the source or target. Again, rather than proceed in full generality, we proceed by way of

36Indeed, some of the considerations presented here were inspired by the discussion found in [123], as well
as from discussion with the author D. Radičević.
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example, which will hopefully suffice in filling in the sense in which we can indeed define a

conserved current in this setting.

Our plan in the remainder of this section will be to construct some examples of currents

for the target space and the source.

10.1 Target Space Examples

In this section we construct a current associated with a discrete symmetry of the target Y .

We first consider the case of a Z/2Z symmetry, and then proceed to a more elaborate class

of examples based on SL(2,Fp).

We first illustrate how to construct a conserved associated with a discrete Z/2Z symmetry

of the target Y . To be precise, suppose we work over the punctured affine line, and consider

physical fields ϕ(u) ∈ Fq[u, u
−1]. We fix our Lagrangian to be:

L[ϕ] = αDuϕDuϕ− βϕ2, (10.1)

where as before, Du = u∂u, and we have suppressed the appearance of a pairing Fq×Fq → Fp

to ensure that all configurations of L[ϕ] evaluate to Fp valued quantities. We observe that

this action is invariant under the transformation ϕ(u) 7→ −ϕ(u). This action defines a

“constant sheaf” in the sense that for each point in the source X, we take the same value of

the group Z/2Z. To follow the Noether procedure, we now consider promoting this symmetry

transformation to a local one, i.e., we consider the transformation ϕ(u) 7→ g(u)ϕ(u). Working

to first order in the derivatives of g(u), we can then hope to extract a conserved current,

much as we would in the continuum setting.

So, the main condition we require is that no matter what point in X = A× we take, we

require that g(u) evaluates to 1 or −1. Moreover, we need to be able to find a set of spanning

g(u) in the sense that for each point in X, we can find a g(u) which would evaluate to either

1 or −1 there (i.e., it is an arbitrary symmetry transformation). In the continuum setting,

this cannot really be accomplished with a smooth function because large fluctuations from 1

to −1 necessarily create large discontinuities. It can be accommodated in the lattice setting

(as in [123]), but again, the smooth limit is unclear.

The characteristic p setting is “simpler” in this regard. To illustrate, suppose we consider

first the q − 1 non-zero points of Fq, i.e., the point set of A×. Let us label these points as

x1, ..., xq−1. Now, we would like to find a g(u) which generates a preferred set of signs

y1, ..., yq−1, where each yi is either 1 or −1 (i.e., bits). To find a g(u) which accomplishes

this task, we use the method of Lagrange interpolation. First, introduce the Lagrange

polynomials:

lj(u) =
∏
k ̸=j

u− xk
xj − xk

∈ Fq[u], (10.2)
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which satisfies lj(xi) = δij, the Kronecker delta. Then, the desired g(u) is obtained from:

g(u) =
∑
j

yjlj(x). (10.3)

If we restrict to degree q − 1 polynomials, this solution is unique. If we allow the degree

to be larger, then we can of course consider more general g(u)’s which also evaluate to 1 or

−1, and we can use these to build up local sections of the associated bundle. For example,

we could consider instead g(uq), which would evaluate pointwise to the same values as g(u),

although it clearly has different derivatives (the case g(uq) has vanishing derivatives). We

can also allow negative powers of u, since we can also take g(u) ∈ Fq[u, u
−1]. For example,

for g(u) defined as in equation (10.3), the inverse g(u)−1 makes sense for all points on the

punctured affine line A×.
With this in place, let us now determine the Noether current associated with this sym-

metry transformation. To obtain the associated current, we introduce a background gauge

field and consider the Lagrangian:

L[A, ϕ] = αDuϕDuϕ− βϕ2, (10.4)

for α, β ∈ Fp, in which the covariant derivative is given by:

Duϕ = Duϕ+ Auϕ, (10.5)

and where we have introduced a non-dynamical gauge field Au. The Z/2Z gauge transfor-

mations are then:

ϕ(u) 7→ g(u)ϕ(u) (10.6)

Au 7→ Au + g(u)Dug(u)
−1 (10.7)

Duϕ 7→ gDuϕ, (10.8)

where we require g(u) to evaluate to 1 or −1 pointwise on the source X. Note that in

the gauge field transformation, we have taken g(u)Dug(u)
−1 rather than g(u)Dug(u). At

the level of evaluating on point sets, the two choices are equivalent, but if one wishes to

generalize to other discrete symmetries, it seems more appropriate to use the former rather

than the latter.

From this, we conclude that L[A, ϕ] is indeed gauge invariant. To extract the associated

current with this symmetry transformation, we now demand stationarity of the action under

variations of A. Shifting A 7→ A+ δA, with δA a local one-form on X, we have:

S[A+ δA, ϕ]− S[A, ϕ] =
∑
t∈A×

L[A+ δA, ϕ]− L[A, ϕ] (10.9)
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= α
∑
x∈A×

2δAϕDuϕ+ 2 (δA)2 ϕ2. (10.10)

Treating δA as an infinitesimal variation which formally satisfies (δA)2 = 0, we observe that

there is indeed a gauge field / current coupling, and the current is:

Ju = 2αϕDuϕ. (10.11)

Clearly, the entire derivation can be extended to the higher-dimensional setting by a suitable

replacement of Du.

In what sense is this current conserved? In the characteristic zero setting, the conservation

equation for currents of continuous symmetries can be directly verified by imposing the on-

shell equations of motion. In the present setting, the significance of imposing an equation

such as αD2
uϕ + βϕ = 0 is less clear. Indeed, if we restrict to physical field configurations

which obey this condition, we observe that the resulting expression for DuJu would be:

DuJu = 2α
(
DuϕDuϕ+ ϕD2

uϕ
)

(10.12)

= 2α

(
DuϕDuϕ−

β

α
ϕ2

)
(10.13)

= 2L[ϕ], (10.14)

which in general is not zero. So, even though we can gauge a symmetry and observe that

there is a standard background gauge field / current coupling, the notion of a conserved

current is less apparent.

Though our discussion has primarily focused on the case of the punctured affine line, it

should be clear that this notion generalizes in a straightforward way both to more general

choices of characteristic p curves (with punctures), as well as higher-dimensional geometries.

Let us briefly explain the sense in which our construction generalizes to other algebraic

curves. In this setting, it is more appropriate to view the g(u) as local sections of the sheaf

of non-vanishing functions, denoted as Gm. We remark that Gm is just the punctured affine

line, viewed as a group under multiplication. We can also speak of µn, the sheaf of nth roots

of unity, where it is simplest to assume that gcd(p, n) = 1. In this case, one can establish

that the ℓ-adic cohomology groups with Z/nZ coefficients (identified with the sheaf of of nth

roots of unity) on a genus g algebraic curve X satisfy:

rkH0
Ét
(X,Z/nZ) = 1 (10.15)

rkH1
Ét
(X,Z/nZ) = 2g (10.16)

rkH2
Ét
(X,Z/nZ) = 1 (10.17)

rkH i
Ét
(X,Z/nZ) = 0 for i > 2, (10.18)

namely it is the same as for a complex curve. For us, the point is that we can speak of Z/2Z
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bundles, and the associated gauge theory which comes with it.

Nothing stops us from generalizing this to more general choices of discrete symmetries

and currents. To give some “non-standard” examples, we can also consider the symmetry

group SL(2,Fp), i.e., 2 × 2 matrices with entries in Fp with determinant 1 ∈ Fp. To build

a corresponding theory which enjoys this symmetry, we introduce two doublets of physical

fields ϕi and χi for i = 1, 2 which transform via matrix multiplication:[
ϕ1

ϕ2

]
7→
[
a b

c d

] [
ϕ1

ϕ2

]
(10.19)[

χ1

χ2

]
7→
[
a b

c d

] [
χ1

χ2

]
. (10.20)

Then, we can introduce the kinetic term proportional to:

εijDuϕ
iDuχ

j = Duϕ
1Duχ

2 −Duϕ
2Duχ

1. (10.21)

Observe that under a constant SL(2,Fp) transformation, we have:

εij∂ϕ
i∂χj 7→ εijM

i
i′M

j
j′Duϕ

i′Duχ
j′ = εijDuϕ

iDuχ
j. (10.22)

We would not follow this procedure in characteristic zero, because it has the unpleasant fea-

ture of creating “wrong sign kinetic terms” (i.e., ghosts) for propagating degrees of freedom.

Indeed, we can introduce the explicit basis of fields:

σ± = ϕ1 ± χ2, π± = χ1 ± ϕ2, (10.23)

which diagonalizes the kinetic term at the expense of obscuring SL(2,Fp) invariance. Up to

a constant of proportionality, we have:

εijDuϕ
iDuχ

j = Duσ+Duσ+ +Duπ+Duπ+ −Duσ−Duσ− −Duπ−Duπ−. (10.24)

To introduce a corresponding gauge symmetry, we consider 2× 2 matrices of the form:

g(u) =

[
a(u) b(u)

c(u) d(u)

]
, (10.25)

where a(u), b(u), c(u), d(u) ∈ Fp[u, u
−1] such that ad− bc = 1. The gauging procedure then

proceeds much as one would expect, namely we introduce a covariant derivative:

Duϕ = Duϕ+ Auϕ, (10.26)
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so that under a gauge transformation we have:

ϕ 7→ g(u)ϕ (10.27)

Au 7→ g(u)Aug(u)
−1 + g(u)Dug(u)

−1 (10.28)

Duϕ 7→ g(u)Duϕ, (10.29)

and from this, we get the kinetic term:

Lkin = εij (Duϕ)
i (Duχ)

j , (10.30)

where we have set α = 1 for simplicity. The current then follows from considering the

linearized coupling to the gauge field:

εji (Au)
j
k ϕ

kDuχ
i + εijDuϕ

i (Au)
j
k χ

k, (10.31)

i.e., we have:

(Ju)
k
j = εjiϕ

k
(
Duχ

i
)
+ εij

(
Duϕ

i
)
χk (10.32)

= ϕk (Duχj)− (Duϕj)χ
k. (10.33)

We remark in passing that the groups SL(2,Fp) also show up in surprising ways in the

characteristic zero setting. For example, we have, for the binary tetrahedral and icosahedral

groups:37

2T = SL(2,F3) (10.34)

2I = SL(2,F5). (10.35)

10.2 Spacetime Symmetry Examples

Let us now turn to currents involving the source or “spacetime”. We view such symmetries

as automorphisms of the spacetime X, which is the closest analog to a “diffeomorphism”

we can entertain in the characteristic p setting. We would like to construct a corresponding

Noether current associated with such symmetries.

Now, in the characteristic zero setting, the canonical example of a spacetime symmetry

current is just the stress energy tensor of the theory. We obtain this by starting with the

action for matter fields and varying with respect to the background metric:

Tab = −
2√
deth

δSmatt

δhab
. (10.36)

37The binary octahedral group is instead given by CSU(2,F3), the group of conformal special unitary
matrices acting on F3. For additional examples of such groups, see [124].
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Returning to the characteristic p setting, we already face some difficulties with this interpre-

tation, because we need to have a notion of the “metric” as well as quantities such as deth. As

we already explained in subsection 4.5, there is still a notion of
√
deth ∈ Ωm(X,KX) which

implicitly varies as we change the choice of symmetric bilinear form h : T ∗X×T ∗X → K. So,

at least at the level of varying our action, we can still make sense of the variational problem

specified by equation (10.36). The main subtlety we face, as in our previous discussions, is

that now, we cannot simply drop “surface terms,” since we do not possess the same notion

of Stokes’ theorem in the characteristic p setting. Nevertheless, at the level of a variational

principle, we can still speak of the corresponding current associated with diffeomorphisms.

Now, in addition to these “continuous” transformations, this procedure also automati-

cally includes symmetries which one might view as “discrete transformations”. For example,

in QED in four dimensions, the theory is also invariant under parity, and time reversal trans-

formations, namely spacetime symmetries. In the present setting, there is little distinction;

all of the automorphisms of X are on the same footing, and the corresponding Noether

current equally applies to the “continuous” and discrete automorphisms of X.
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11 Topological Actions

There is a sense in which formulating a physical theory over a characteristic p geometry

is necessarily topological, simply because the number of points in both the spacetime and

the target space are already discretized. Of course, one of the important features of such

geometries is that whereas notions such as the Zariski topology are quite coarse, more refined

étale topologies provide a closer link to the expected realm of characteristic zero geometry.

In this section we discuss in greater detail the sense in which we can formulate topological

actions with respect to an étale topology.

For starters, let us explain the sense in which the actions we have been discussing so far

need not be topological. By way of example, consider the free scalar on the punctured affine

line A× over Fp, with Lagrangian:

L[ϕ] = αDuϕDuϕ− βϕ2. (11.1)

Now, in the path integral, we have weighted each field configure by a factor of exp(2πiS/p).

This sort of weighting by a pth root of unity is of course quite reminiscent of various topolog-

ical actions one encounters in various Chern-Simons theory and BF theories as well as more

general Dijkgraaf-Witten theories [125]. As an example, consider a three-manifold M3 and

an abelian (spin) Chern-Simons theory with two gauge fields a and A with action:

SCS[A, a] =
1

4π

∫
M3

2A ∧ da−Na ∧ da. (11.2)

The equations of motion for a relate the curvatures f and F respectively for a and A as

f = F/N , so making use of this equation of motion takes us to an “improperly quantized”

Chern-Simons action for just A:

“Simp[A] =
1

4πN

∫
M3

A ∧ dA”. (11.3)

The factor of 1/N in the action is quite reminiscent of our proposal to take ℏ = p/2π. Of

course, the proper action to use is really SCS[A, a] rather than Simp[A, a], in part because

the former is invariant under large gauge transformations whereas the latter is not.

Another important difference is that by design, the Chern-Simons action does not depend

on the choice of a metric on the three-manifold M3. This is to be contrasted with the action

implicitly defined in equation (11.1). Although there is no notion of “metric” per se, we

have already mentioned that there is an implicit dependence on a symmetric bilinear form

h : T ∗X ⊗ T ∗X → Fp, so it violates the spirit of building a topological action. Another way

of saying the same thing is that although our action is of course trivial with respect to the

Zariski topology, the pairing h depends on a choice of étale covering Xi → X.
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In [89–92] a proposal is given for defining an arithmetic Chern-Simons theory, and this is

further generalized in [126] to various Dijkgraaf-Witten topological theories [125].38 Intrigu-

ingly, the main player in defining an arithmetic “classical” Chern-Simons invariant is the

appearance of a 1
N
Z/Z valued functional, which is also rather close to the considerations we

have been discussing. On the other hand, we will be formulating our action over a threefold

(in the case of Chern-Simons theory) rather than appealing to any analogy between points

in SpecZ and knots in real three-manifolds. So, rather than directly make contact with

this interesting proposal, we shall instead attempt to directly construct the characteristic p

version of our action.

To proceed, we now discuss an example of a topological action and its generalization

to the characteristic p setting. We primarily focus on abelian Chern-Simons theory on a

three-manifold:

SCS[A] =
k

4π

∫
A ∧ dA =

k

4π

∫
d3x εµνρAµ∂νAρ (11.4)

Here, A is a one-form connection for an abelian gauge group. We have already argued that

we can still speak of the gauge connection on a characteristic p space, so the main obstruction

we face appears to be the existence of a suitable notion of a three-index tensor εµνρ for the

Chern-Simons action.

It is already instructive to ask about what happens if we take the above characteristic

zero actions and extend the ground field from R to C. There is a simple way to extend all of

our actions simply by treating A as a (0, 1)-form. Then, assuming the existence of a suitable

three-index object amounts to to requiring a non-vanishing section of H0(X,KX) with KX

the canonical sheaf.39 Said differently, if X is Calabi-Yau, namely it has trivial canonical

sheaf, then we can specify a classical action. For a threefold we can then write:

Shol-CS on X3 =

∫
X3

Ω(3,0) ∧ A(0,1) ∧ ∂A(0,1). (11.5)

There are two general issues we encounter in specifying such an action. First of all, the action

is not even real valued. This is not much of an issue in the context of physical superstring

computations because the holomorphic Chern-Simons action, for example, is mainly used

to extract superpotential couplings (via the target space formulation of the topological B-

model). Of course, we can produce a real action by adding the complex conjugate to any

configuration in a trivial manner.

Another issue is that our action is not really gauge invariant, and is instead only defined

modulo periods of the holomorphic three-form of the Calabi-Yau space. There is a simple

workaround for this which is to extend the Calabi-Yau threefold to a Fano fourfold Y with a

meromorphic (4, 0)-form Ω(4,0). The pole for this meromorphic form is a Calabi-Yau threefold

38For a different way in which number theoretic structures enter in the discussion of topological field
theories, see for example [127] and references therein.

39This follows from Serre duality for a threefold X. We have H3(X,OX) ≃ H0(X,KX)∨.
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(as follows from adjunction), and we take this to be X, the original space of interest. We can

then introduce a corresponding manifestly bulk gauge invariant action for the holmorphic

Chern-Simons action:

SFF on Y4 =

∫
Y4

Ω(4,0) ∧ ∂A(0,1) ∧ ∂A(0,1), (11.6)

which is now manifestly gauge invariant. The price we pay is that now we are making

reference to a specific bulk space Y4 to define our action, but this at least has the virtue of

being well-defined.

We now turn to the characteristic p analog of this structure. Nothing stops us from

introducing the analog of the Chern-Simons action, and again we face the same issues with

the action being defined modulo periods of Ω ∈ H3(X,OX) ≃ K. To address this, we view

X3 as a divisor of an ambient Y4, and instead work with respect to the topological action

defined on Y4. We can then restrict as necessary to the subspace cut out by the pole of the

four-form on Y4. From this perspective, we can introduce the action:

SFF on Y4 =
∑
y∈Y4

evu=y (Ω ∧ dA ∧ dA) , (11.7)

in the obvious notation. Much as in other contexts we already considered, we can produce

an Fp-valued action by first working over K a finite extension of Fp and then performing a

trace over K/Fp.

At some level, it would be more satisfactory if we could directly dispense with the ap-

pearance of a bounding space Y4. For example, we can perform precisely the same analysis

in the context of ordinary 3D Chern-Simons theory, where the presence of an improperly

quantized level means that to truly define the theory we must view as a boundary term of

a 4D topological theory with action proportional to θF ∧ F with θ circle valued. There is

a special decoupling which occurs when the level is properly quantized, and so it is natural

to ask whether the characteristic p situation is actually more similar to working over C, or
closer to the real case.

So, let us simply write down a Chern-Simons action and check whether it is gauge in-

variant. Our proposed action on X a threefold is:

SCS on X3 = k
∑
x∈X

evu=x (Ω ∧ A ∧ dA) , (11.8)

for abelian Chern-Simons, with the obvious generalization for non-abelian Chern-Simons

theory. The basic issue we face is that under a large gauge transformation, the action will not

necessarily return to itself. For abelian Chern-Simons theory, this is detected through the

fundamental group of the underlying three-manifold, while for non-abelian Chern-Simons

theory it is captured by the “winding number” as specified by the classification of maps

g : M3 → G. We do have suitable notions of an étale fundamental group as well as higher
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etale homotopy groups (see e.g., Appendix E of reference [128]) so it is of course natural to

ask whether we can make sense of possible issues with “winding field configurations” in our

topological action. To keep things concrete, work over the ground field K = Fq and suppose

our threefold is actually a product A× × S.
Our main interest will be in general gauge transformations of the form A 7→ A+ g−1dg,

where g(u) ∈ K(u, u−1) is such that all evaluations evu=x(g(u)) for x ∈ A× is invertible. As

a warmup, consider g(u) = ul for arbitrary l ∈ Z×. In this case, we have:

g−1dg = lu−1du. (11.9)

Observe that for characteristic p ̸= 2, we have (see equation (8.4)):∑
x∈F×

q

u−1 = 0. (11.10)

So at least for this class of gauge transformations, the action is invariant. Note that this

also includes the topologically non-trivial case involving “winding modes”, i.e., g(u) = up

the Frobenius map (see section 8.4). Indeed, such winding modes are in one to one corre-

spondence with elements of Gal(K/Fp) ≃ Z/dZ with d the degree of the field extension in

question, and the Frobenius map the generator of Z/dZ. More generally, consider any g(u)

an automorphism A× → A×. We can perform a change of local coordinates, reducing to the

case of a polynomial g(u). From this, we conclude that our action is, in fact gauge invariant.

Similar considerations hold for other topological actions and their characteristic p coun-

terparts. For starters, we can generalize to the case of a non-abelian Chern-Simons theory.

In this case, the gauge transformations will produce terms of the form Tr(g−1dg)3, which

provides a “practical” definition of winding numbers for the corresponding maps g : X3 → G

with G the non-abelian gauge group. As an another case of interest, we can consider the

four-dimensional BF theory on a four-manifold M4 specified by the choice of a 0-connection

A and a 1-connection B for an abelian gerbe:

SBF =
k

2π

∫
B ∧ dA =

k

2π

∫
d4x εµνρρBµν (∂ρAσ − ∂σAρ) . (11.11)

From this, it does appear that there is a natural characteristic p version of various topo-

logical actions, and that is actually somewhat more direct when compared with working over

C (as opposed to R).
Our approach so far has been rooted in building explicit actions. This is rather different

from the mathematical approach to defining and studying topological field theories (TFTs)

via the Atiyah-Segal axioms [129,130], where one specifies a TFT as a symmetric monoidal

functor Z : Bordξ
n → (VecC,⊗) for Bordξ

n bordism classes of n-manifolds (with (n − 1)-

dimensional boundaries) equipped with some choice of ξ-structure. This can be generalized

(i.e., categorified) in various ways, but the main point is that we need a notion of specifying
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a partition function Z(M) on a manifoldM equipped with some structure such that we have

a suitable notion of cutting and gluing, as captured by cobordisms.

Does this have any meaning in the characteristic p setting? The first question we need

to address is whether we can even specify a suitable algebro-geometric definition of cobor-

dism. In fact, for complex bordisms there appears to be a suitable generalization to algebraic

bordism which applies for any characteristic zero field (for example the p-adics) [131–133].

In that setting, it is important that one works over characteristic zero to have Hironaka’s

theorem for resolving singularities. That being said, it would appear that nothing prevents

us from working p-adically and then performing a suitable reduction mod p.40 The fact

that we have a candidate class of actions available, and thus corresponding partition func-

tions, suggests that the main bottleneck is indeed simply coming up with an appropriate

generalization of Bordξ
n. Perhaps the answer is to be found in [128].

40This is especially natural in the context of p-adic analytic spaces, a topic we briefly touch upon in section
20.
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12 Physical Twistors and Amplitudes

In the previous sections we have proposed a general path integral formalism as well as a

Hilbert space interpretation for physical systems on characteristic p geometries. Now, one

of the subtle points we have already encountered is that the notion of “time ordering” in

the characteristic p setting involves making some choices with regards to what we mean by

time evolution in the first place. That being said, we have also seen that for the punctured

affine line, we have a notion of “past and future,” so it does appear to make sense to speak

about scattering amplitudes and other related observables and we can use the standard link

between scattering amplitudes and time ordered correlation functions to at least formally

define these notions.

In this section we further analyze the extent to which we can expect such notions to

extend to the characteristic p setting. To keep things concrete, we focus on the case of

four-dimensional field theories with a natural conformal structure in the characteristic zero

setting. In this case, we can fruitfully borrow many notions from twistor geometry to recast

questions concerning the causal structure in the four-dimensional setting in terms of algebro-

geometric structures in three complex dimensions. At this point, our line of approach ought

to be clear: once we recast our questions in algebro-geometric terms, we can pass over to

the arithmetic setting. In Appendix L we review some elements of twistors for real and

complexified spacetimes, so we assume the main elements of this discussion in what follows.

In what follows we primarily work over the algebraic closure Fp, but also consider the case

where we restrict to Fp. Our plan will be to first introduce a notion of physical twistors

in characteristic p, and to then discuss solutions to wave equations in this setting, viewed

as elements of bundle valued cohomology groups. Scattering amplitudes implicitly follow as

functions which depend on these bundle valued cohomology groups.

12.1 Twistor Space

Our starting point will be conformally compactified Minkowski space FpM# as specified by

the quadric in FpP5:41

εαβγδR
αβRγδ = 0, (12.1)

where εαβγδ is the four-index epsilon tensor and Rαβ = −Rβα with α, β = 1, 2, 3, 4, namely

the Rαβ denote homogeneous coordinates of FpP5. Raising and lowering of pairs of indices is

accomplished via (we adopt the standard physics conventions which are acceptable at least

when p ̸= 2):
1

2
εαβγδR

αβ = Rγδ. (12.2)

41A word on notation. We have been indicated the choice of ground field for the affine line and other spaces
by A1(Fp, but here we have put the choice of ground field “to the left”. This is more to make comparison
with the standard twistor theory literature.
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We can formally solve the quadric equation εαβγδR
αβRγδ = 0 by introducing two copies of

projective twistor space PT ≃ FpP3 with homogeneous coordinates Zα and W β via:

Rαβ = ZαW β − ZβWα. (12.3)

So, in the twistor perspective, a pair of twistor points specify a point in the spacetime. Since

a point in twistor space can also be viewed as specifying a divisor, a pair of divisors can, via

their intersection, specify a line, namely an FpP1. So, each point in our spacetime specifies

a line in twistor space.

Now, once we introduce a suitable infinity bitwistor Iαβ we can indicate the region of

FpM# to delete via the equation:

IαβR
αβ = 0 (12.4)

where for Minkowski space, we demand:

IαβI
αβ = 0. (12.5)

The discussion is purely algebraic, and therefore parallels what can be done in real and com-

plex space, so we can essentially appeal to the discussion given in Appendix L. In particular,

we make the choice that

Iαβ =


0 0 0 0

0 0 0 0

0 0 0 +1

0 0 −1 0

 , (12.6)

in which case the line at infinity is specified by setting R34 = 0. We can now meaningfully

split the homogeneous coordinates up as Zα = (Z1, Z2, Z3, Z4) = (ω1, ω2, π1′ , π2′). In this

case, there is a distinguished line, the “twistor at infinity” given by

P1
∞ = {π1′ = π2′ = 0} , (12.7)

and we can refer to the space with this P1
∞ deleted as PT′. In practice, what we really mean

by this is that we allow ourselves to consider various sections of bundles with poles along

this P1
∞.

Let us now turn to the characterization of the points which are not at infinity in Minkowski

space so that R34 ̸= 0. In this chart, it is helpful to introduce a 2× 2 position matrix xAA′

with entries:

xAA′
=

1

î

[
R14/R34 −R13/R34

R24/R34 −R23/R34

]
. (12.8)

Here, we have introduced the number î which satisfies F (̂i) = −î with F Frobenius conju-
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gation. In this patch, Minkowski space is represented as the paraboloid:

R12

R34
+ detx = 0 (12.9)

as follows from substitution into the quadric equation. In these variables, the incidence

relation is:

ωA = îxAA′
πA′ . (12.10)

The locus of points associated with Fp Minkowski space, are those points in PT′ for which
F (xAA′

) = xAA′
.

12.2 Zero Modes and Amplitudes

Now, one of the elegant applications of twistor methods is in the study of zero mode solutions

for massless fields in Minkowski space. This approach exploits the conformal structure of

such massless systems. As discussed for example in [134–137], we can speak of a state of

helicity h as being captured by an element of the cohomology group H1(PT′,O(2h − 2)).

Here, we have been deliberately imprecise about a specific choice of a cohomology theory.

Presumably, the physically sensible case is associated with rigid cohomology or some closely

related variant (we discuss some possibilities later in section 13).

Now, in the context of scattering theory of massless particles, we are accustomed to

specifying a state of null momentum in terms of an outer product:

PAA′ = λAλ̃A′ , (12.11)

where λA and λ̃A′ are two-component spinors. Now, these objects have opposite degree of

homogeneity. In the spirit of reference [137], we can work directly in terms of functions

on twistor space by “Fourier transforming” one of these helicity variables. The meaning

of Fourier transform is unclear in characteristic p, but does make sense in the context of

p-adic geometry. At any rate, nothing stops us from directly defining physical quantities on

the projective twistor space PT′, and once we do so we can basically borrow the analysis

of reference [137] where we interpret scattering amplitudes on (momentum) twistor space in

terms of the geometry of such twistorial objects. For example, quantities such as the leading

order contribution to the color-stripped n-gluon MHV amplitude (−,−,+, ...,+) computed

in reference [138] (we use standard spinor-helicity conventions):

M∼
〈
λ(s), λ(t)

〉4
⟨λ(1), λ(2)⟩ ... ⟨λ(n), λ(1)⟩

, (12.12)

where there is an implicit momentum conservation condition has been inserted, and particles

s and t have −1 helicity while all others have helicity +1. Our main point is that such

quantities still make sense as quantities defined over PT′ with ground field Fp as do more
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general scattering amplitudes.

A potential objection to this way of proceeding is that whereas the leading order tree

level behavior of scattering amplitudes has a simple presentation in terms of meromorphic

sections of bundles on twister space, loop corrections to this structure necessarily involve

the appearance of transcendental functions of the momenta. Owing to this, one might ask

whether any generalization is available which would also apply to such situations.

As a first comment along these lines, we remark that at least for unitary theories, one

expects that the scattering amplitudes obtained are analytic functions of the Mandelstam

parameters, aside from possible branch cut singularities. Expanding around any given region

in complexified kinematic variables, we can then ask whether it makes sense to discuss such

structures in the characteristic p setting. Indeed, one answer we can provide is that there

is indeed a notion of formal Laurent series such as Fp[[u, u
−1]], and we can restrict to the

physical case where the degree of the inverse powers is bounded, as associated with Fp((u)).

In fact, one can also generalize this to accommodate fractional powers; for example in the

space Fp{{u}} of Puiseux series we deal with fractional powers, which we can obtain from

the direct limit on n of F p((u
1/n).

A somewhat unsatisfactory element of such an answer is that the amplitude is no longer

really a “number” but instead a formal power series. This too can be rectified by performing

a further lift to an expression defined over the p-adics. In this case, the main issue would

seem to be that the radius of convergence for a p-adic expression can be rather different

from its more standard counterpart defined over C. For additional discussion of the p-adic

exponential, see e.g., Appendix Q, and for additional discussion of the p-adic (poly)logarithm,

see e.g., Appendix R. Nevertheless, the main point we wish to emphasize here is that insofar

as the analysis of scattering amplitudes rests on objects “visible” within the scope of algebraic

geometry, there is an implicit prescription available for recasting these structures over other

choices of ground field.42

42For some additional discussion in the context of non-Archimedean geometry in mixed characteristic, as
well as its potential relations to tame geometry, see section 22.
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13 Fermionic Systems

Our discussion up to this point has focused on systems involving bosonic degrees of freedom.

In this section we develop a parallel story for fermionic degrees of freedom. We shall make

use of the main geometric elements for bosonic systems developed previously. For now, we

again restrict to the special case where:

ℏ =
p

2π
, (13.1)

with p a prime. For some earlier discussions of arithmetic with Grassmann algebras see

e.g., [139,140].

As before, we motivate our analysis by beginning with a quantum mechanical system

with discretized observables. In this case, we consider a two state Hilbert space spanned by

the states |↑⟩ and |↓⟩, and introduce fermionic operators b̂ and ĉ which satisfy the algebra:{
b̂, ĉ
}
= 1, b̂2 = ĉ2 = 0. (13.2)

These operators act on our states as follows:43

b̂ |↓⟩ = 0, b̂ |↑⟩ = |↓⟩ (13.3)

ĉ |↓⟩ = |↑⟩ , ĉ |↑⟩ = 0. (13.4)

As an example, we can consider the Hamiltonian operator:

Ĥ = mĉ̂b. (13.5)

Time evolution of states is accomplished by acting with the unitary operator:

U(t) = exp(−iĤt/ℏ), (13.6)

where we assume (as discussed previously) that we can only make measurements in a smallest

time step t ∈ Z. Even though the fermionic degrees of freedom are already discretized, one

might ask whether there are any restrictions on the parameter m. Observe that the explicit

form of our time evolution operator is:

U(t) = exp

(
−2πi

p
mĉ̂bt

)
. (13.7)

43By inspection, ĉ = b̂†.
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Acting on the two states, we have:

U(t) |↓⟩ =
∑
n≥0

1

n!

(
−2πi

p
mĉ̂bt

)n

|↓⟩ = 0 (13.8)

U(t) |↑⟩ =
∑
n≥0

1

n!

(
−2πi

p
mĉ̂bt

)n

|↑⟩ = exp

(
−2πi

p
mt

)
|↑⟩ . (13.9)

Provided we restrict m to the integers, we see that the complex phase for |↑⟩ will eventually
return after at most p time steps. With this motivation in mind, we can now proceed

to develop the parallel formalism for fermionic path integrals. This is an entirely standard

development in characteristic zero, and is covered in detail for example in [141] and Appendix

A of [142].

What is not so standard is to understand the characteristic p version of fermionic systems.

Here, we will aim to convey the main physical issues. The first issue we face is that we will

need to supplement the finite field Fp by anti-commuting Grassmann variables. We define

Grassmann variables χi by requiring that they anti-commute, i.e.:

χiχj = −χjχi. (13.10)

The appropriate notion of an Fp-valued Grassmann variable in this setting will be that the

extension of the Frobenius endomorphism F to anticommuting variables leaves such variables

fixed. With this in mind, we require that an Fp-Grassmann variable χ satisfies:

F (χ) = χ, (13.11)

which is the analog of Hermitian conjugation in characteristic zero. We also demand that

for any bosonic ϕ ∈ Fp that we have:

F (ϕχ) = ϕχ. (13.12)

Now, given multiple Fp Grassmann variables, we would like to extend the action of the

Frobenius automorphism to products of Grassmann variables.

A priori, there are two ways in which one might attempt to proceed. On the one hand,

if we insist on keeping all coefficients valued in Fp, we can consider an action which respects

multiplicative order. On the other hand, we can allow the Frobenius map to switch the order

of fermions:

Foption 1(χψ) = F (χ)F (ψ) = χψ, (13.13)

Foption 2(χψ) = F (ψ)F (χ) = ψχ. (13.14)

In the physical setting, it is more natural to treat Grassmann fields as operators, so a conju-
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gation operation would switch the order of multiplication. We therefore focus on “option 2.”

The case of “option 1” is of interest in its own right, however, and we discuss how to build

supersymmetric actions with this choice in Appendix M. One can view the two procedures as

related by analytic continuation, i.e., by multiplying some fields by appropriate “imaginary

numbers.”

Now, in characteristic zero, we are often interested in Hermitian operators built from

products of such fermionic fields. The way we do this involves multiplication by factors of

i =
√
−1, since complex conjugation reverse the order of multiplication on Grassman fields

and i∗ = −i. We need to introduce a suitable notion of “i” which flips sign under Frobenius

conjugation. We already encountered this feature in our discussion of vector potentials in

section 4.4, where we noted that
√
−1 sometimes will not accomplish this goal. For example,

in F5, observe that 32 = −1. Just as in section 4.4, we will instead seek out a root of the

polynomial equation:

xp = −x, (13.15)

and we denote one such root by î. Observe that by design, we have, under Frobenius

conjugation:

F (̂i) = îp = −î. (13.16)

Since î is not invariant under Frobenius conjugation, it is not an element of Fp. Note,

however, that its square î2 is invariant, and is therefore an element of Fp. What we cannot

assert, however, is that î2 = −1. Indeed, î is an element of Fq with q = p2. A combination of

Fp-valued Grassmann numbers invariant under Frobenius conjugation can now be obtained

through a product such as:

îχψ. (13.17)

Having set our conventions for Grassmann coordinates in characteristic p, we can now

proceed to build fermionic actions. As a warmup, we first develop the 1D path integral.

Introduce a formal parameter u and expand our fermionic fields via the power series:

χ(u) =
∑
m

χmu
m and ψ(u) =

∑
m

ψmu
m, (13.18)

where each of the coefficients is an Fp-Grassmann variable. Returning to our two state

system, the Lagrangian will be viewed as a Grassmann even polynomial in the variable u,

and the action is obtained through the evaluation map:

S =
∑
x∈X

evu=x

(̂
iχ∂uψ − îmχψ

)
, (13.19)

namely we evaluate to an Fp valued Grassmann bilinear. Indeed, each term in the above

sum is invariant under Frobenius conjugation, and should thus be viewed as Fp valued.

Evaluation of the path integral now proceeds just as in characteristic zero; We can per-
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form Grassmann integrals by expanding the exponentials, and evaluate fermionic correlation

functions in the standard way.

This generalizes to other spacetime dimensions. With conventions as in subsection 4, we

introduce a polynomial ring Fq[u1, ..., uD] for our bosonic physical fields. We can supplement

this by tensoring with a set of Grassmann coordinates. Along these lines, recall from equation

(4.5) that a bosonic physical field was initially presented as a power series expansion:

ϕ(u1, ..., uD) =
∑

m1,...,mD

ϕm1...mD
(u1)

m1 ...(uD)
mD , (13.20)

We can write a fermionic analog of this by expanding with Grassmann valued coefficients:

χ(u1, ..., uD) =
∑

m1,...,mD

χm1...mD
(u1)

m1 ...(uD)
mD , (13.21)

where each coefficient χm1...mD
is to be treated as a Grassmann coordinate. Now, in the

bosonic case, the path integral instruction is to sum over all these choices of ϕi1...iD . In the

fermionic context, we perform a Grassmann integral. So, we can again construct Lagrangians

and actions for our physical fields. The only difference now is that there will be some Grass-

mann dependence. The main condition we impose is that the coefficients of any expression

in our action are again Fp valued. Again, this is the analog of a “reality condition” in the

characteristic p context.

What sort of correlation functions should we consider computing in this context? As in

the case of purely bosonic systems, we observed that operators which respect our reduction

modulo p are the ones of interest. In the fermionic context, the standard expansion of

Grassmann integrals might suggest that this is not possible. Of course, in quantum field

theory we are accustomed to viewing operators constructed from composite fermions as

bosonic objects. This in turn means that in this setting, the simplest class of operator

correlation functions to consider are those which are built from such bosonic operators. An

example of this sort is the time evolution operator of our two level system introduced in

equation (13.6).

Proceeding along the same steps following for our bosonic field theory, we can extend all

of these considerations to far more general spacetimes X and target spaces Y . In this more

general setting, it is appropriate to replace our polynomials by expressions which are locally

rational functions. This is acceptable provided we specify what happens at the singularities

of the evaluation map.

Now, up to this point we have ignored the spin of our fermionic degrees of freedom. In

characteristic zero, one can locally speak of a spinor bundle, and in suitable circumstances

this extends to the global manifold. In more algebraic terms, we can introduce a sheaf of

spinors S such that along each stalk Sx, we have a spinor representation of the Lorentz

algebra.
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To carry out the same sort of construction in characteristic p, we first need to decide on a

suitable notion of an orthogonal group. Fixing a symmetric bilinear form, ηab, we can again

speak of linear transformations which leave this bilinear form invariant. We refer to the

corresponding Lie algebra as spin(η). We can then construct finite-dimensional irreducible

representations of the corresponding Lie algebra, which we interpret as specifying the “spin”

of the corresponding physical field. This also extends to corresponding groups, which we

label as Spin(η). We define a spinor sheaf as one in which for each stalk Sx there is a natural

group action by Spin(η). It is in this sense that we are able to define spinors. From this

perspective, the evaluation of each fermionic field at a point x ∈ X should be viewed as

being valued in Sx. Again, this is quite analogous to what happens in characteristic zero.

13.1 Supersymmetry

From the way we have set up our action principle, we can even entertain a notion of su-

persymmetry which interchanges bosonic and fermionic degrees of freedom. Note that in

lattice supersymmetry [143], there are some difficulties because finite difference operations

do not respect a Leibniz rule, and this is crucial in satisfying the standard supersymmetry

algebra [144]. Here, we are working in terms of general rational polynomials, and so the

usual “rules of the game” for supersymmetry should carry through, at least in constructing

supersymmetric actions.

To illustrate, we construct a characteristic p supersymmetric quantum mechanics. It

is superficially rather close in form to the one in characteristic zero, but there are some

important subtleties having to do with factors of “i”.

As a warmup, we briefly review the case of N = 2 supersymmetric quantum mechanics

in characteristic zero. In that setting, the Lagrangian is:

L =
1

2
(∂tϕ)

2 + iΨ∂tΨ+
1

2
f 2 +W ′f +W ′′ΨΨ. (13.22)

Here, ϕ is a real bosonic field, Ψ = ψ1 + iψ2 and Ψ = ψ1− iψ2 are complex Grassman fields,

f is a real auxiliary field, and W (ϕ) is a superpotential. Additionally, we have adopted

the standard physics convention which is to reverse the order of Grassmann variables under

complex conjugation. From this, we see that the Lagrangian is invariant under complex

conjugation. The action is invariant under two supersymmetry transformations (see e.g., the

reviews in references [145,146]):

δ1ϕ = iΨ, δ1Ψ = 0, δ1Ψ = −(∂tϕ+ if), δ1f = −∂tΨ (13.23)

δ2ϕ = iΨ, δ2Ψ = −(∂tϕ− if), δ2Ψ = 0, δ2f = +∂tΨ. (13.24)

Let us verify that the action is invariant under these two transformations. Under δ1, we
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have:

δ1L = (∂tϕ) (i∂tΨ) + i(−∂tϕ− if)∂tΨ+ (−∂tΨ)f (13.25)

+W ′′(iΨ)f +W ′(−∂tΨ) (13.26)

+W ′′(−∂tϕ− if)Ψ (13.27)

= ∂t (−W ′Ψ) , (13.28)

which is a total derivative. Assuming suitable boundary conditions for our integral over the

time coordinate, we verify that supersymmetry is a symmetry of the system. Consider next

the variation under δ2. This yields:

δ2L = (∂tϕ)(i∂tΨ)− i∂t(−∂tϕ+ if)Ψ + f(∂tΨ) (13.29)

+W ′′(iΨ)f +W ′∂tΨ (13.30)

−W ′′(−∂tϕ+ if)Ψ (13.31)

= ∂t((∂tϕ)(i∂tΨ) + f(∂tΨ) +W ′Ψ). (13.32)

Note the appearance of the minus signs. This is because our convention is to only vary the

“leftmost” fermionic field. We stress that nothing depends on this choice. As is standard,

we can integrate out the auxiliary field f , and arrive at a physical potential for the field ϕ

given by:

V (ϕ) =
1

2
W ′W ′. (13.33)

We now turn to the characteristic p version. As we already mentioned, we assume that

Frobenius conjugation reverses the order of multiplication for Grassmann fields. This means

that up to “some factors of i,” the structure of our action should look rather similar.

With this in mind, we now consider a single Fp valued bosonic field ϕ(t) and a pair of

Fp valued Grassmann variables χ(t) and ψ(t). We could in principle introduce a “complex

field” Ψ = χ+ îψ as well, but to track the Fp structure explicitly, we have chosen the current

presentation. We also introduce an Fp valued auxiliary field f(t) and a superpotential W (ϕ)

which will be a polynomial in the ϕ variable with coefficients in Fp. We denote the derivatives

of W with respect to ϕ as W ′ and W ′′. Our proposed Lagrangian is:

L =
1

2
(∂tϕ)

2 + îχ∂tψ −
î2

2
f 2 +W ′f + îW ′′χψ. (13.34)

We now verify that this Lagrangian is supersymmetric. We introduce the two variations:

δ1ϕ = îψ, δ1ψ = 0, δ1χ = −(∂tϕ+ îf), δ1f = −∂tψ (13.35)

δ2ϕ = îχ, δ2ψ = −(∂tϕ− îf), δ2χ = 0, δ2f = +∂tχ. (13.36)
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Consider first varying with respect to δ1. This yields:

δ1L = (∂tϕ)
(̂
i∂tψ

)
+ ξ(−∂tϕ− îf)∂tψ − î2(−∂tψ)f (13.37)

+W ′′(̂iψ)f +W ′(−∂tψ) (13.38)

+W ′′(−∂ty − îf)ψ (13.39)

= ∂t (−W ′ψ) . (13.40)

Observe that we have a “total derivative”. As far as we are aware, there is no characteristic

p analog of Stokes’ theorem, but we shall interpret the presence of such terms as physically

innocuous. Our reason for doing so is that in any sensible physical formulation, we would

need to define an action modulo exact differential forms anyway, and differential forms do

make sense in characteristic p.

Next, consider varying with respect to δ2. This yields:

δ2L = (∂tϕ)
(̂
i∂tχ

)
− î∂t(−∂tϕ+ ξf)χ− î2(+∂tχ)f (13.41)

+W ′′(̂iχ)f +W ′(+∂tχ) (13.42)

−W ′′(−∂tϕ+ îf)χ (13.43)

= ∂t((∂tϕ) îχ− î2fχ+W ′χ), (13.44)

which is again a “total derivative.” Integrating out the auxiliary field f , we arrive at a

potential for the field ϕ given by:

V (ϕ) =
1

2
W ′W ′, (13.45)

We can extend this analysis in a number of ways. For one, we can consider multiple

fields ϕA, χA, ψA and fA. Following our discussion of section 4, we can interpret this as Fq

valued fields. In this case, the condition that we produce an Fp valued action is satisfied by

choosing an Fq valued function w(ϕ) and then taking its norm to build the superpotential:

W =
n∏

i=0

F i(w(ϕ)) = w(ϕ)1+p+...+pn−1

= w(ϕ)(1−p
n)/(1−p) (13.46)

Observe that a critical point of W is necessarily either a zero or a critical point of w(ϕ). We

can also introduce more general kinetic terms, much as we would in the characteristic zero

setting. For example, we can write:

L =
1

2
KAB∂tϕ

A∂tϕ
B + îKABχ

A∂tψ
B − î2

2
KABf

AfB +
∂W

∂ϕA
fA + î

∂2W

∂ϕA∂ϕB
χAψB. (13.47)
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13.2 A Cohomology Theory

This discussion also allows us to set up a physically motivated cohomology theory. Working

on shell so that:

fA = î−2KAB ∂W

∂ϕB
(13.48)

the supercharges are given by:

Q+ = îψA

(
∂

∂ϕA
+ î−1

∂W

∂ϕA

)
= −

(
∂tϕ

A + î−1
∂W

∂ϕA

)
∂

∂χA
(13.49)

Q− = îχA

(
∂

∂ϕA
− î−1 ∂W

∂ϕA

)
= −

(
∂tϕ

A − î−1 ∂W
∂ϕA

)
∂

∂ψA
, (13.50)

where we have indicated by an explicit “derivative” (as dictated by the conjugate momentum)

how it acts on a given field. We observe that both Q’s are nilpotent:

Q2
+ = Q2

− = 0 (13.51)

and so can be used to define cohomology theories in characteristic p. In this setting, the

Q’s act on the space of superfield configurations. The natural grading is specified by the

Fermion number, namely the number of Grassmann fields.

Now, in characteristic zero, there is a close interplay between Q-cohomology and other

well known cohomological theories such as de Rham and Dolbeault cohomology. Here, the

situation is quite a bit more subtle because in characteristic p, we do not have the analog

of the Poincaré lemma which ensures that in suitably “small” patches, any differential form

can locally be written as an exact differential form.

A reasonable analog in characteristic p to the characteristic zero de Rham cohomology

goes under the name of crystalline cohomology (see e.g., [147–149]).44 The main idea is

to find a suitable way to “thicken” a characteristic p variety so as to get an analog of the

Poincaré lemma. This proceeds by generating a lift of a given scheme to a characteristic zero

variety. Given this, it is tempting to posit that the Q-cohomology we have just specified will

work in a similar fashion.

Indeed, we note that our actual starting point for constructing physical fields began by

dealing with integer valued fields, so we are free to return to this setting. Given a field ϕ

taking values in Z, we can consider its presentation in terms of a p-adic integer in Zp via the

formal expansion:

ϕ =
∑
m≥0

ϕmp
m (13.52)

in terms of the Teichmüller representatives ϕi (see Appendix P). To compute actual coho-

44In the context of the Weil conjectures, it is actually more common to consider étale and ℓ-adic cohomology
theories, but on physical grounds we expect crystalline cohomology to also provide an appropriate framework
as well.
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mologies, we can get a “first approximation” by working modulo p. Then, we can refine

this approximation by working modulo p2, and so on. The more formal way to state this

is that we view our integer valued field as specifying a Witt vector, and then addition and

multiplication of physical fields is treated as the corresponding operation on W, the space

of Witt vectors (see Appendix P). There is a natural reduction mod pn so we can also speak

of Wn = W/pnW. Giving a full account of crystalline cohomology would take us too far

afield. The main point for us is that in many cases of interest, we can consider a related

characteristic zero scheme Z over W. In this setting, we can indeed work in terms of de

Rham cohomology, and thus obtain the relation between the crystalline cohomology of a X

over a field K and its characteristic zero “cousin” Z:

H i
cris(X/W) = H i

DR(Z/W). (13.53)

These cohomologies are in turn constructed via the inverse limits:

H i
cris(X/W) = lim

←−
H i

cris(X/Wn) (13.54)

H i
DR(Z/W) = lim

←−
H i

DR(X/Wn). (13.55)

In fact, it has also been appreciated that there are some limitations to using crystalline

cohomology. One issue is that the theory makes the most sense when X is smooth and

proper over a ground field K. To handle the more general situation, one often deals with

a generalization known as rigid cohomology which can be applied in a more general setting

[150] (see the lecture slides of reference [151] as well as the book [152]).45 The important

point for us is that this defines a universal p-adic Weil cohomology theory, and admits

comparison theorems to de Rham cohomology (just like the crystalline case). Since our

supersymmetric quantum mechanics formulation does not really require a smooth variety,

it is tempting to conjecture that the Q-cohomology we have been dealing with specifies a

crystalline cohomology in the smooth case:

H i
Q(X) ≃ H i

cris(X/W), (13.56)

while in the more general setting, we expect:

H i
Q(X) ≃ H i

rig(X). (13.57)

Part of establishing such a correspondence will of course entail being more precise about the

ring of coefficients for these different situations.

Now, in the physical theory, we often view the Q-cohomology as elements in a finite-

dimensional Hilbert space. From the above considerations, it would seem natural to restrict

the coefficients of this Hilbert space to a field of characteristic zero such as the one used in

45For a related discussion in mixed characteristic, see reference [153].
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defining crystalline cohomology. The appearance of a Hilbert space also allows us to define

an index for Q, as given by (see e.g. [26]):

IndQ = Tr(−1)F = kerQ− cokerQ (13.58)

where F is the fermion number operator. At this point, an important comment is that even

though we are dealing with a discretized spacetime and target space, we are considering all

possible morphisms between these spaces, as well as their lift to formal characteristic zero

spaces. For this reason we should expect on general grounds that the index of Q is in general

non-trivial. This again distinguishes the present approach from lattice formulations.

By design, none of this is very different from supersymmetry in characteristic zero. Now,

there is a rich mathematical story for supersymmetric quantum mechanics [154, 155]. It

would be interesting to see whether this carries over to the present setting. Here we set

our ambitions lower and apply this in the most simple-minded way, observing that for Wess-

Zumino models, the index ofQ just counts the critical points of the superpotentialW , namely

the locus where dW = 0. Geometrically, we started with a target space Y , and now can

specify this subvariety as {dW = 0} ⊂ Y . As a a simple application, if we write w = ϕ̃h(ϕ)

with {h = 0} = Z a smooth subvariety of Y , then ϕ̃ serves as a Lagrange multiplier so that

the critical points of w correspond to all the points of Z. Again, we emphasize that these

notions continue to make sense in characteristic p and make no reference to any metric (which

is important since we do not have a metric!). Our cohomology theories provide a convenient

way to compute the resulting point set as a set of “vacua” associated with vanishing potential

energy.

It is tempting to extend the analogy with the characteristic zero case even further by

developing the analog of the A-model and B-model twist.46 Here, however, we seem to have

a somewhat richer set of possibilities because the way in which we complexify / adjoin roots

in pass from Fp to some extension contains many choices. It would be interesting to study

the correlators in this setting.

13.3 Zeta Functions

We now turn to a few brief comments on the connection between Zeta functions in character-

istic p and our supersymmetric quantum mechanics. We introduced an index which counts

(with signs) “vacua,” or more precisely the critical points of a superpotential W (ϕ). The

zero locus defines a variety V in characteristic p, and we can consider varying the ground

field Fq, which as we have seen corresponds to adding more particles into the system. From

our earlier remarks on interpreting physics on Fq/Fp for q = pn as defined by a system of n

particles, we also see that there is a natural action of the Galois group Gal(Fq/Fp) ≃ Z/nZ
on this system of particles. We note that this is generated by the Frobenius map x 7→ xp.

46We thank E. Torres for comments on this point.
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To account for this redundancy, it is appropriate to actually only count contributions to the

index up to this group action. There is of course the subtlety that this group action may not

act transitively on the space of solutions, but this is simply the price we pay in setting up

the appropriate particle statistics. Introducing a fugacity z to track the number of particles,

we introduce the more general formula:∑
n≥1

Trn
(
(−1)Fzn

)
=
∑
n≥1

#V (Fpn)

|Gal(Fpn/Fp)|
zn =

∑
n≥1

#V (Fpn)
zn

n
= logZV,p(z), (13.59)

which we recognize as the log of the celebrated Hasse-Weil Zeta function in characteristic p.

An additional remark is that we can of course change the ground field from Fp to Fq, and

this also has a clear interpretation in our setting.

An additional remark here is that the Zeta function of a variety can be expressed in

terms of rational function, each of which is closely tied to the characteristic polynomial for

the Frobenius action on the corresponding cohomology groups. Letting F (i) : H i → H i

denote this Frobenius action, it is a linear map, and so we can construct a characteristic

polynomial:47

Pi(z) = det(id− zF (i)). (13.60)

It turns out that the Zeta function can be expressed as (see [157–160]) as a superdeterminant:

ZV,q(z) =
P1(z)...P2D−1(z)

P0(z)...P2D(z)
, (13.61)

where D denotes the dimension of the variety V .

In Appendix K we collect a few examples of Zeta functions. In some cases, we can

evaluate these expressions “by hand,” but the more general case requires quite a bit more

machinery. As some simple examples, we can see that in the special case where V is the

affine line, we get, via our superpotential computation:

#A1(Fpn) = pn, (13.62)

while in the case of the projective line, we get:

#P1(Fpn) = 1 + pn. (13.63)

We observe that the Zeta function in these two cases are related to the partition functions

of free particles. For example, we have:

ZA1,p(z) =
1

1− pz
(13.64)

47Our convention is as in [156]. Note also that that the natural range of i is 0, ..., 2D, where D is the
dimension of the variety V .
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ZP1,p(z) =
1

(1− z)(1− pz)
. (13.65)

This basically parallels how one would expect to apply the standard Weil cohomology

theories to compute the Zeta function. For example, in both the case of étale, ℓ-adic,

(see [25,161]) and rigid (see [162]) cohomology theories, one first calculates the cohomology

groups H i(V ) (we ignore subtleties with the coefficient ring) and then specifies the induced

action of the Frobenius map ψ : V → V , associated with the pullback ψ∗ : H i(V )→ H i(V ).

One can then count the fixed points of the Frobenius map via the associated signed index

formula, namely via a formula such as:

#Fix(ψ) =
∑
i

(−1)iTr(ψ∗, H i(V )). (13.66)

Indeed, we are performing the same set of operations in our physical setting, up to

one subtlety. Observe that our Q-cohomology can be viewed as specified with respect to a

coefficient ring in the p-adic integers. That being said, since we are talking about computing a

supersymmetric index with physical states in a standard Hilbert space, we seem to instead be

referencing coefficients in C. As we discuss in section 16, the path integral is really furnishing

us with characters valued in a C as obtained from a “henselization” (see Appendix P) of the

integers embedded in the p-adics. Because of this, the counting problems really do appear to

be the same. All this is to say the usual physical strategy for computing the supersymmetric

index appears to line up with its usage in the mathematical setting.

We remark that this Zeta function enters in the study of the Riemann hypothesis in

characteristic p. These are connected with the development of a suitable “Weil cohomology”

theory in characteristic p which has coefficients valued in characteristic zero. For a review

of the Weil conjectures, see e.g., [163]. We also note that this seems to fit with one of the

“Atiyah fantasies” outlined in reference [164]. Here, our choice of cohomology theory is

instead specified by a choice of nilpotent supercharge.

Our proposed relation between the supersymmetric index and the Zeta function also

allows us to make sense of the Zeta function, even when the variety V is singular. This

seems to line up with expectations from rigid cohomology.

That being said, there are some clear pitfalls compared with the case of characteristic

zero. For example, a common strategy in the characteristic zero setting is to consider per-

turbations in the physical theory so as to localize the path integral sum around specific field

configurations. Doing so in this setting can spoil the counting problem, since for example,

the Zeta function of an elliptic curve depends quite sensitively on its arithmetic properties.

Of course, the failure of the index to remain invariant under such perturbations is by itself a

quite intriguing feature, and points to additional structure being present in the corresponding

Hilbert space.

It would be interesting to develop this further.
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14 FI Parameters Revisited

Having sketched how to make sense of various field theories in characteristic p, we now turn

to a potential physical application, in the context of large field ranges of a quantum field

theory. The standard lore is that in a theory of quantum gravity, increasing the field range

of a scalar leads to a breakdown in the low energy effective field theory. For super-Planckian

field ranges, one does not expect semi-classical reasoning to carry over. In this section we

revisit this class of questions from the perspective of reduction modulo p a prime number.

To keep things concrete, we focus on a 4D supersymmetric U(1) gauge theory with a

Fayet-Iliopoulos parameter [165]. We have already sketched how to generate a supersym-

metric quantum mechanics theory, as well as gauge theories in characteristic p, so we can

already anticipate that the same algebraic manipulations which are used in characteristic zero

will have characteristic p analogs. It was argued in [166] that 4D N = 1 supergravity theo-

ries without a global R-symmetry are incompatible with the existence of an FI parameter.

Indeed, the typical situation in a string compactification is that such “parameters” actually

arise as vevs of background fields (see e.g., [167]). Building on [14], references [15–17] argued

that there is a potential loophole in such arguments if the FI parameter comes quantized in

units of 2M2
pl:

ξ = 2mM2
pl for m ∈ Z. (14.1)

where here Mpl refers to the reduced Planck mass, i.e., we have:

M2
pl =

1

8πGN

. (14.2)

In all known string constructions, the resulting FI parameters appear to actually be “field

dependent” that is, it is really just the background vev for another dynamical field. One

could in principle imagine that such a large value of the FI parameter instead emerges from

a suitably quantized flux. In Appendix N we present some evidence that this is indeed

possible.

Here, we ask whether we can use our present perspective on field theory in characteristic

p to study this and related questions where the field range becomes extremely large. We

begin by writing down the bosonic sector of a 4D N = 1 theory with gauge group U(1)

and chiral superfields φ1, ..., φn with charges q1, ..., qn. Anomaly cancellation imposes the

conditions q1+ ...+ qn = 0 and q31 + ...+ q
3
n = 0 (namely cancellation of U(1)grav2 and U(1)3

anomalies), but one can in principle relax these conditions by viewing the gauge theory as

a subsector of a bigger model. In characteristic zero, the bosonic sector of the Lagrangian

contains the terms:

S ⊃
∫
d4x

− 1

4g2
FabF

ab +
∑
i

|∂φi + qiAφi|2 −
g2

2

(∑
i

qi |φi|2 − ξ

)2
 , (14.3)
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where g refers to the gauge coupling of the U(1) gauge theory. We now consider performing

a similar rescaling as that indicated in section 3. We assume that each field can move a

minimal step Λmin. We also make the replacement d4x 7→ Λ−4max and ∂ 7→ Λmax∂. Focussing

on just the terms which involve the scalar field (we can include the gauge field kinetic term

in much the same way), our proposal for a discretized action is:

Sdisc =
∑
x∈X

Λ2
max

Λ2
min

∑
i

|Daφi|2 −
g2

2

Λ4
min

Λ4
max

(∑
i

qi |φi|2 − 2m
M2

pl

Λ2
min

)2
 . (14.4)

We make the assumption that the ratios of energies come in quantized steps so that we can

set:
Λ2

max

Λ2
min

=
2π

N
,

M2
pl

Λ2
min

=M ,
g2

2

Λ4
min

Λ4
max

=
2π

N
B. (14.5)

for some integers B,K,N ∈ Z. The factors of π appearing here are actually rather natural.

For example, we can also present these conditions as:

Λ2
max

Λ2
min

=
2π

N
,

M2
P

Λ2
min

= 8πK, αU(1)
Λ4

min

Λ4
max

=
B

N
, (14.6)

where MP is the non-reduced Planck mass, i.e., M2
P = G−1N and αU(1) = g2/4π. In any event,

this motivates us to consider the discretized action:

Sdisc =
2π

p

∑
x∈X

∑
i

|Daφi|2 −B

(∑
i

qi |φi|2 − 2r

)2
 , (14.7)

namely, we work modulo N = p a prime number, and we have introduced an integer param-

eter r = mK. Here, we have also assumed that our fields are valued in Fp(̂i), and the |·|
notation refers to expanding out as a square, i.e.:

|φ|2 = a2 − î2b2 for φ = a+ îb with a, b ∈ Fp. (14.8)

In terms of our previous conventions where we view all physical fields as rational mor-

phisms between schemes, we also absorb the factor of ℏ = p/2π into our definition of the

path integral phase. In terms of this, we reach our characteristic p action:

S =
∑
x∈X

evu=x

∑
i

|Daφi|2 −B

(∑
i

qi |φi|2 − 2r

)2
 , (14.9)

In this case, we can apply all the machinery previously developed. One immediate ob-

servation is that in working mod p, it could happen that the discretized analog of the FI

parameter now vanishes. So, an expansion around ξ = 0 and a super-Planckian FI parameter
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can in such cases appear quite similar in characteristic p.

Let us now turn to the vacua of the system. In characteristic zero we label these as zeros

of the effective potential, modulo U(1) gauge transformations. This defines a toric variety

Y and the procedure just outlined specifies a symplectic quotient:

Y = (C∗)n //U(1). (14.10)

One can generalize this in various ways by including additional fields, as well as multiple

U(1) factors. Note that because we demanded that the qi’s sum to zero, we have a toric

Calabi-Yau space, but there are some additional constrains which are being imposed from

working in four dimensions. If we had considered the analogous problem in a 2D system,

we could relax these conditions further. For additional discussion of the 2D field theory

analysis, see e.g., [168].

With this in mind, we now consider the analogous class of questions associated with 2D

gauged linear sigma models with N = (2, 2) supersymmetry. In this setting, the connection

to toric geometry becomes quite apparent. Two canonical examples of non-compact Calabi-

Yau spaces which are captured by such a symplectic quotient include O(−n) → CPn−1

and O(−1) ⊕ O(−1) → CP1. With suitable charge assignments, a positive value of the FI

parameter specifies the volume of the compact CPn−1 and CP1 factor. In the case of the

conifold, switching to negative values of the FI parameter signals a flop transition.

Consider next the related analysis in characteristic p. See for example [169] for some

discussion of toric geometry in characteristic p. In this case, we can still define an appropriate

quotient by a group action, but now it is of the form:

Y =
(
Fp(̂i)

)n
//U(1,Fp(̂i)). (14.11)

As an illustrative example, in the case of O(−n)→ Pn−1, the D-term equation can be written

as:

|φ1|2 + |φ2|2 + ...+ |φn|2 − n |z|2 = 2r. (14.12)

with fields φi of charge +1 and z of charge −n, with solutions identified modulo the group

action by U(1,Fp(̂i)). Suppose we fix the value of z. In the characteristic zero setting, this

would define a Pn−1, and we expect something similar to hold in characteristic p > 0 as well.

To see why, let us begin by introducing a copy of Pn−1(Fp(̂i)) with homogeneous coordinates

[u1, ..., un] ∼ [λu1, ..., λun] for λ ∈ Fp(̂i). A convenient way to parameterize the λ ∈ Fp(̂i) is

in terms of a “radial part” and a “phase”:

λ = c · µ, (14.13)

for c ∈ Fp and µ ∈ U(1,Fp(̂i)). Indeed, working over the ground field Fp, we can build a

U(1,Fp(̂i)) bundle over Pn−1, and the total space is of dimension 2n−1 over the ground field
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Fp. This is the characteristic p version of constructing an S2n−1 as a circle bundle over CPn−1.

Just as there, the affine quadric specified by the D-term constraint of line (14.12) provides

a convenient way to build an S2n−1(Fp). So, working modulo U(1,Fp(̂i)) identifications,

we expect that the symplectic quotient specified by equation 14.11 does indeed define a

Pn−1(Fp(̂i)).

An interesting feature of this analysis is that provided 2r+n |z|2 is non-zero, the number

of points in this Pn−1 is always the same, even if we vary the FI parameter. To see this, we

note that our Pn−1 can instead be written as a coset space:

Pn−1 =
SU(n,Fp(̂i))

SU(n− 1,Fp(̂i))× U(1,Fp(̂i))
, (14.14)

and so given a single point in this space, we can use the transitive SU(n,Fp(̂i)) group action

to reach any other point.

We can also count the number of such points. To do this, suppose that in the presenta-

tion in terms of the homogeneous coordinates [Φ1,Φ2, ...,Φn] the coordinate Φ1 is non-zero.

Then, we get an affine patch with coordinates Φi/Φ1 for i = 2, ..., n. There are n − 1 such

coordinates, so we get a total of pn−1 distinct points. Next, suppose that Φ1 = 0 but that

Φ2 is non-zero. In this patch, we have coordinates Φi/Φ2 for i = 3, ..., n, and we get a total

of pn−2 distinct points. Continuing in this way, we can get all the way down to all Φi = 0

for i = 1, ..., n − 1, and we are left with the single point [0, ..., 1], which counts as just one

point. The total number of points is then:∣∣Pn−1∣∣ = pn−1 + pn−2 + ...+ p+ 1 =
1− pn

1− p
. (14.15)

We note that this is essentially a decomposition of Pn−1 into smaller constituents:

Pn−1 = An−1 ⊕ An−2 ⊕ ...⊕ A1 ⊕ A0. (14.16)

More generally, consider varying the value of r′ = 2r+ n|z|2. The D-term constraint can

then be presented as:

|φ1|2 + |φ2|2 + ...+ |φn|2 = r′, (14.17)

modulo U(1,Fp(̂i)) transformations. If there were no symplectic quotient, we would just get

a copy of An, which has pn points. Varying r′ over Fp, we see that there are (p− 1) non-zero

values, and one where it vanishes. So, the total number of points in An can be written as:

|An| = (p− 1)
∣∣Pn−1∣∣+ ∣∣Pn−1

r′=0

∣∣ , (14.18)

so we also learn that: ∣∣Pn−1
r′=0

∣∣ = pn − (p− 1)
1− pn

1− p
= 1. (14.19)
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Consequently, if we now vary z, we see that we can visualize the total space as a collection

of Pn−1 spaces. These split into two types, ones where n |z|2 + 2r ̸= 0, and those with

n |z|2+2r = 0. We note that both can occur “frequently” when in characteristic p. Another

comment is that even as we vary the FI parameter, we do not recover a “macroscopic

geometry.” Indeed, each of our shells has a finite number of points.

As another example, consider the case of a conifold, namely a quadric. From the per-

spective of our U(1) gauge theory, we introduce two charge +1 fields u1, u2, and two charge

−1 fields v1 and v2. The point set is then captured by the condition:

|u1|2 + |u2|2 − |v1|2 − |v2|2 = 2r, (14.20)

modulo identifications by the U(1,Fp(̂i)) group action. Here, we observe another curiosity:

In characteristic p, the notion of r “positive and negative” does not really make sense. Of

course, the action r → −r does still switch the roles of the u and v coordinates, corresponding

to a flop transition, but we can no longer identify this with just continuing a Kähler class to

negative values.
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15 Geometric Engineering in Characteristic p > 0

As already mentioned in the Introduction, one of the motivations for the present work

is that some of the main tools used in constructing string vacua make use of techniques

from algebraic geometry, with little explicit use made of the actual spacetime metric in the

extra dimensions. This is usually viewed as a problem, because it means that many non-

holomorphic quantities of interest such as the masses of particles can at best be obtained

in some approximation scheme. On the other hand, the very fact that these constructions

are often formulated in the algebraic setting is a welcome feature in studying the passage to

characteristic p. Based on our physical considerations presented in section 3, we view the

resulting arithmetic geometries as the highly quantum regime of a string compactification.

This by itself is rather intriguing and seems motivation enough. Here we consider a variant

of geometric engineering [27–30] but in characteristic p.

Our plan in this section will be to make use of some of the more rigorously established

aspects of geometric engineering in characteristic zero, now transported to the characteristic

p > 0 setting. Our string compactification geometries will be Calabi-Yau varieties. This

means the canonical sheaf is trivial. We will be interested in geometric engineering, the

framework used to connect certain singular string compactification geometries to partially

twisted field theories. For a recent overview of geometric engineering in characteristic zero,

we refer the interested reader to reference [170]. For some recent discussion of Calabi-Yau

spaces over finite fields, see e.g., [79, 80,76].

15.1 Higgs Bundles and Local Singularities

The first non-trivial example we wish to consider involves a correspondence between the

Hitchin system on a genus g complex curve Σ with an ADE gauge group G, and a local

singular Calabi-Yau threefold Y comprised of a curve Σ of ADE singularities.

For example, in the case of an AM−1 singularity, the singularity can be presented as the

hypersurface equation:

xy = zM , (15.1)

where (x = y = z = 0) denotes the location of the curve. We will denote by Yt the smoothings

of the threefold. The physics of this system has been investigated in a number of papers, for

a partial list of examples see e.g. [29,171–176]. Let us briefly review the match between the

two moduli spaces, working at smooth points.

The correspondence involves matching the Hitchin moduli space to the moduli space

defined by the Weil intermediate Jacobian of the Calabi-Yau. In this correspondence, the

base of the Hitchin moduli space defined by Casimir invariants of a Higgs field maps to

smoothing deformations of the Calabi-Yau. The data of holonomies in the Hitchin system

maps to periods of a three-form potential defined on the Calabi-Yau threefold. On the

Hitchin system side of the story, we specify a pair (E ,Φ) consisting of a principal G bundle
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E and a Higgs field Φ, which defines a map:

Φ : E → E ⊗ KΣ, (15.2)

with a suitable notion of stability for the Higgs bundle. The first important match between

these two structures is the mapping between coefficients in the spectral equation of the Higgs

field (viewed as a hypersurface in the canonical bundle over Σ) and smoothing deformations

of the local Calabi-Yau threefold. In more detail, recall that the spectral equation for the

Higgs field in the fundamental representation is:

det(uIM×M − Φ) =
M∑
i=0

ciu
M−i = 0, (15.3)

with u a section of the canonical bundle, and ci a Casimir invariant built from the Higgs

field, which we view as a section of (KΣ)
⊗M . These map to unfoldings of the singularity:

xy =
M∑
i=0

ciu
M−i. (15.4)

The zero set of the spectral equation specifies a spectral cover of the original curve:

Σ̃
π→ Σ. (15.5)

Additionally, we can equip Σ̃ with a line bundle L̃, and via the spectral cover construction

[177], the push-forward map under π∗ generates a vector bundle. This line bundle can also

be viewed as being specified by a point in the Jacobian of Σ̃, and this in turn has a direct

analog in the smoothed Calabi-Yau threefold geometry Yt as a point in the Weil intermediate

Jacobian J (Yt).
An important feature of establishing this correspondence rigorously is that it can actually

be formulated algebraically, with no direct reference to metric data.48 Given everything we

have seen so far, it would seem natural to expect a correspondence over characteristic p to

also hold. Again working with respect to the A-type case, we expect that on the Hitchin

system side of the correspondence will involve an SL(N,Fq) vector bundle E , and a Higgs

field

Φ : E → E ⊗ KΣ. (15.6)

Encouragingly, we note that some work has been done on developing Hitchin systems in

characteristic p, and has even figured in the proof of the Fundamental Lemma of the Lang-

lands program (see e.g., [178–180]), and this fits in the broader discussion of formulating

Higgs bundles in characteristic p. A natural question to address in this direction would

48We thank R. Donagi and T. Pantev for discussions on this point.
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be to develop suitable comparison theorems from changing the ground field.49 Presumably,

the closest analog to the characteristic zero correspondence holds for the case of Fp, but we

expect that the more general situation over a finite field is also well-defined.

There are various generalizations of this basic correspondence. In characteristic zero, it

is also expected that we can instead consider a Kähler manifold S of dimension d equipped

with a Higgs bundle with structure group G an ADE group specified by the pair (E ,Φ). In
this case, the expectation is that there is again a correspondence, but this time with a local

Calabi-Yau (d+2)-fold Y specified by a Kähler manifold of ADE singularities (see e.g., [171,

184–186]). A non-trivial feature of the d > 1 case is the appearance of non-zero “bulk fluxes”

on the Calabi-Yau side, which in turn is expected to be specified (at a suitable smoothing

of the singular Calabi-Yau) by the Deligne-Beilinson cohomology [187,172]. While even this

has not been established in full generality, one expects that an algebraic correspondence will

also be available in this case as well.

Indeed, we observe that part of this correspondence is straightforward to establish, both

in characteristic zero and in characteristic p. For ease of exposition, we assume that the

canonical bundle of S is very ample. In this case, we can construct the spectral equation in

the total space of the canonical bundle for S, and match the corresponding Casimir invariants

with smoothing deformations of the Calabi-Yau Y . In all these cases, we expect that this

extends to meromorphic Higgs fields with singularities specified along various subspaces. As

a particular case of interest, observe that we can now specify a characteristic p version of

the Vafa-Witten system [188] on a Kähler surface. This in turn suggests a potential way to

connect with the GL twist of reference [189], though in the geometric engineering setting,

this is usually not phrased as a purely holomorphic problem.50 For example, recall that in

characteristic zero, we can engineer N = 4 Super Yang-Mills theory by working with type

IIB strings on a E × C2/ΓADE, with E an elliptic curve and C2/ΓADE an ADE singularity,

as defined by a singular hypersurface equation. This sort of geometry still makes sense

in characteristic p, so presumably we can use this to set up a characteristic p analog of

reference [189].

One difficulty we encounter in the characteristic p setting is that while there is a match

between smoothing deformations of the local Calabi-Yau spaces and deformations of the

spectral equation for the Higgs bundle, the extension of this to include the data of Deligne-

Beilinson cohomology is less straightforward. In particular, a point emphasized in refer-

ence [172] is that in the characteristic zero setting for Calabi-Yau threefolds, the behavior

of limiting mixed Hodge structures plays a crucial role in matching the data of the Weil

intermediate Jacobian of the Calabi-Yau threefold to the corresponding vector bundle data

of the Higgs bundle specified on a Hitchin system. But we have also seen in section 13 that

49As a recent example of how this ought to work, see e.g., references [181–183].
50Rather, the local model in question involves branes wrapped on the local Calabi-Yau fourfold T ∗M4

with M4 a four-manifold. It would clearly be interesting to determine whether a characteristic p version
of this story makes sense, particularly sense the GL twist figures prominently in the geometric Langlands
program [189].
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the structure of rigid cohomology enters in a structural way in our discussion of systems

with supersymmetry, especially with regards to using the lifting to the ring of Witt vectors

of the finite field. Doing so, we obtain a characteristic zero variety, and in that setting, we

can implement a p-adic analog of Deligne-Beilinson cohomology known as syntomic coho-

mology [190, 191]. In that setting, we have two filtrations, as associated with the Frobenius

map and the Hodge filtration structures on crystalline cohomology. The combined Hodge

and Frobenius structures produce a filtered ϕFrobenius-module which plays the p-adic analog

to the Hodge structure given in the characteristic zero setting. Syntomic cohomology is then

derived from the Hodge and Frobenius structures, much as Deligne-Beilinson cohomology is

derived from the Hodge structure.51

15.2 6D SCFTs and Topological Modular Forms

A fruitful approach to the study of quantum fields engineered via string theory is to use

six-dimensional superconformal field theories (6D SCFTs) as a starting point for generating

(via further compactification) a number of lower-dimensional quantum field theories. For a

recent review of 6D SCFTs and how they are engineered in F-theory via elliptically fibered

Calabi-Yau threefolds, see references [192,193]. Since we can equally well define such Calabi-

Yau spaces over different ground fields, this immediately provides an operational definition

of what one would mean for at least the Higgs branch moduli space, since this is controlled

by deformations of the defining equations (viewing the Weierstrass model for the elliptically

fibered Calabi-Yau as cutting out a possibly singular hypersurface in some ambient projec-

tive variety).52 One recent intriguing observation is that the compactification of a 6D SCFT

on a four-manifold provides a general template for realizing two-dimensional theories with

minimal N = (1, 0) supersymmetry (see e.g., [194–196]). Now, as conjectured in [197, 198],

topological modular form cohomology classes can be understood in terms of 2D supersym-

metric quantum field theories. Thus, the compactification of 6D SCFTs on four-manifolds

provides a route to generating topological modular forms [196].53 In particular, the elliptic

genus of the 2D theory [204] specifies a four-manifold invariant, and thus relates the theory

of topological modular forms to four-manifolds [196].

Now, since we can also specify characteristic p analogs of four-manifolds, there is a natural

operation we can consider whereby we take the original base B of an elliptically fibered

threefold and replace it by a fibration B → M4 over our four-manifold. Next, interpret this

as the base of an elliptically fibered fivefold. So long as the total space for the fibration

B →M4 is specified by an algebraic equation, we can again introduce a Calabi-Yau fivefold,

51We thank D. Corwin for helpful clarifying comments on these points, some of which we have added here,
essentially verbatim.

52The tensor branch is specified by blowups of the base, and so it is not altogether clear whether this
notion will survive in the characteristic p setting.

53For surveys of topological modular forms, see e.g, [199, 200], and for related physical discussions see
e.g., [196,201–203]. It is of course also tempting to extend these considerations to higher chromatic type.
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and this will generate 2D N = (0, 2) theories. Taking the two-dimensional “spacetime” of

this effective field theory to be an elliptic curve, we see that the Weierstrass model of our

Calabi-Yau fivefold is more singular at primes p = 2, 3. This is perhaps correlated with the

fact that TMF3 ≃ Z/24Z. In any event, it would seem interesting to consider the mod p

reductions of various 6D SCFT backgrounds, as well as their subsequent compactifications.

15.3 Non-Calabi-Yau Cases

In the context of string compactification, Calabi-Yau spaces amount to a special choice be-

cause they preserve some supersymmetry in the uncompactified direction. This is because

Calabi-Yau spaces admit covariantly constant spinors. As is well-known, this can be gener-

alized in various ways. First of all, one can relax the condition of SU(n) metric holonomy

for a complex n-fold, and instead only demand the existence of an SU(n) structure group

for the tangent bundle. This is especially prominent in the study of backgrounds with fluxes

switched on, and the resulting “uncompactified” direction is (at least in controlled examples)

an Anti-de Sitter space background. Insofar as we can start from a Calabi-Yau background

and then switch on such fluxes, we expect to capture such data by the choice of a back-

ground set of quantized fluxes, i.e., as captured by elements in H i(X,Z). This approach

has actually led to a number of recent insights in the arithmetic structure of flux vacua, see

e.g., [72, 74, 83, 84, 86]. In this sense, the program we have been advocating amounts to a

physical justification for the procedure of considering a string compactification “mod p”.

But there are also additional ways in which a string compactification can preserve super-

symmetry, to say nothing of the possibility of non-supersymmetric backgrounds and their

possible extra-dimensional geometric origins (whatever this may be). Here, we would like

to explain how to extend our considerations to such situations. Again, we find it helpful to

proceed by way of example rather than offer a single overarching prescription. To begin, let

us recall the characteristic zero case of a local seven-manifold with metric holonomy G2, as

specified by the Bryant Salamon space [205]. This is given by a round S3 equipped with the

left-handed spinor bundle SL. The resulting total space X is the fibration SL → X → S3.

Now, the important point for us is that this space can also be written as a real algebraic

equation. Indeed, introducing complex coordinates zj = xj +
√
−1yj for j = 1, 2, 3, we have:

Re

(
4∑

j=1

(zj)
2

)
= µ, (15.7)

for µ ∈ R. In terms of the real coordinates xj and yj, we have:

4∑
j=1

(xj)
2 = µ+

4∑
j=1

(yj)
2, (15.8)
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and for µ > 0, the minimal size S3 of radius
√
µ sits at yj = 0, while for µ < 0, the minimal

size S3 of radius
√
−µ sits at xj = 0.

While this construction seems quite tied to special properties of the real differentiable

structures, we observe that in equation (15.7), there is the closely related non-compact

Calabi-Yau threefold given by the smoothing deformation of the singular quadric (i.e., the

deformed conifold):
4∑

j=1

(zj)
2 = µ. (15.9)

Assuming µ > 0, we see that this parameter sets the size of the base S3 in the geometry

T ∗S3, as specified by the real equations:

4∑
j=1

(xj)
2 = µ+

4∑
j=1

(yj)
2 and

4∑
j=1

xjyj = 0. (15.10)

Returning to equation (15.9), this defining space is Calabi-Yau, and can be formulated

over C, but any other ground field, including for example Fp, provided we now interpret

µ ∈ Fp, where all notions of “big and small” are again somewhat meaningless. In particular,

we can still speak of the deformed Calabi-Yau, as specified by equation (15.9).

Let us now turn to the generalization to a suitable notion of a characteristic p G2 space.

Observe that in the case of the G2 space over R, this can be interpreted as the set of points

invariant under complex conjugation under Gal(C/R) ≃ Z/2Z. By a similar token, we can

introduce the qth Frobenius conjugation zj 7→ zqj on each coordinate. Formally, we can then

introduce the trace over the Frobenius map, and then consider the resulting point set. A

difficulty we face in this procedure is that whereas C is a finite extension of R, Fp is a field

extension with infinite degree over Fq. So, the best we can do is introduce some representative

q′ such that Fq′ is a finite field extension of Fq. Then, we can write:

TrF′
q/Fq

(
4∑

j=1

(zj)
2

)
= µ, (15.11)

where now we have restricted to µ ∈ Fq. More explicitly, we have:(
4∑

j=1

(zj)
2

)
+

(
4∑

j=1

(zj)
2

)q

+ ...+

(
4∑

j=1

(zj)
2

)qd−1

= µ, (15.12)

where d denotes the degree of the field extension Fq′ over Fq. Insofar as we are simply adding

in additional points, we can consider the formal limit obtained by proceeding to Fp, but in

this case one would strictly speaking be dealing with an infinite number of equations and

variables over Fq.
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Following this sort of procedure, we see that whenever we can specify a G2 space in

terms of a real algebraic variety, there is a corresponding generalization to characteristic

p geometry. Of course, there are limitations to this approach because in many cases the

precise form of these algebraic equations is not known for G2 spaces! That being said,

even the existence of such a formulation shows that we can make sense of more delicate

structures such as G2 spaces. An additional comment here is that similar considerations

hold for Spin(7) spaces, and in some sense this case is “easier” because in the real setting it

has the same real dimension as a Calabi-Yau fourfold.

With all of this in place, we see that much of what we said about geometric engineering

in the Calabi-Yau setting can be extended to this more class of geometries. Indeed, there

has been recent progress in understanding the corresponding between manifolds of ADE

singularities and their corresponding characterization in terms of a partially twisted field

theory (see e.g., [206–213]). The main bottleneck, then, is simply that explicit presentations

of the requisite real algebraic varieties is not at present known, namely it is a technical (albeit

a non-trivial and important one), rather than a conceptual difficulty.
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Part III

Mixed Characteristic and Beyond
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16 Lifting to the p-adics

In the previous sections we showed that there is a rich geometric structure present in the

special case where we take the reduced Planck constant to be p/2π for p a prime number.

Indeed, this allowed us to build up a formulation of physical fields based on geometry in

characteristic p. With the aim of eventually understanding how to make sense of the general

case:

ℏ =
N

2π
, (16.1)

we now consider a somewhat more general case where where N = pa. Our plan will be

to see how to recognize the appearance of emergent topological structures in this limit. In

particular we will show that this leads to a physical formulation over geometries in mixed

characteristic, namely the ground fields will be characteristic zero, but their residue fields

will be of characteristic p > 0. In section 21 we extend these considerations even further to

cover the case of N given by N = pa11 ...p
am
m .

Now, since our starting point was a basis of fields with integer coefficients, we are free to

consider a p-adic expansion for any such integer t of the form:54

t =
∑
i

tip
i. (16.2)

Working in terms of polynomials in Zp[u1, ..., uD], with Zp the ring of p-adic integers, we see

that we can also construct an action, and perform a similar p-adic expansion:

S =
∑
j≥0

Sjp
j, (16.3)

which truncates at finite order (for a given field configuration). Reduction modulo N means

that we simply drop the higher order terms in this expansion.

This p-adic expansion also shows that at least in the limit a → ∞, there is a natural

topology for our basis of fields and our action. To see how it comes about, we observe first

that for each n ∈ N, the space Z/pnZ can be equipped with the discrete topology (each

point is both open and closed). Next, we can view the p-adic integers Zp as obtained from

the inverse limit (see Appendix I):

Zp = lim
←−

Z/pnZ. (16.4)

Consequently, we can equip Zp with the relative product topology. This turns out to generate

the same topology as we would get if we had just introduced the p-adic norm | · |p from the

54In mixed characteristic we do not need to tread as carefully in how we refer to “local coordinates” t and
u versus “evaluation points” x, and so we will freely conflate the different choices so long as the context is
clear.
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start. Recall that for an integer t = pnt′ with t′ relatively prime to p, we have:

|t|p = p−n. (16.5)

So, higher order powers in p are actually small corrections! Building the field of fractions

out of Zp, we reach the p-adic numbers Qp, and the p-adic norm extends in the expected

way (e.g. |pn|p = p−n). The norm is non-Archimedean in the sense that it satisfies a much

stronger form of the triangle inequality. For t, t′ ∈ Qp, we have:

|t+ t′|p ≤ max(|t|p, |t′|p) ≤ |t|p + |t′|p. (16.6)

Moreover, if |t|p ̸= |t′|p, then we have the equality |t + t′|p = max(|t|p, |t′|p). Clearly, this

is a different notion of proximity from what one is accustomed to dealing with in using the

real numbers, but if all we consider is the integers, there is a priori no issue with introducing

such a norm.55

Much as in our discussion of characteristic p > 0 geometries, we will also be interested

in cases where the ground field is taken to be a field extension L of Qp. The p-adic norm

extends to this more general setting since, if the degree of the field extension is n = [L : Qp],

we can take the Norm in the sense of Galois theory (i.e., the product over all Galois conjugate

values) to extend the p-adic norm for any α ∈ L:

|α|p = |NormL/Qp(α)|1/np . (16.7)

In all cases, L admits an analogous π-adic expansion which is related to p, but the precise

nature of this expansion parameter depends on the degree of ramification in the extension.56

Returning to the case where the ground field is Qp, the specification of the coefficients

tj and Sj in equations (16.2) and (16.3) is actually somewhat subtle. One’s first inclination

might to be just fix the coefficients according to coefficients valued in {0, ..., p−1}, with each

of these having a clear interpretation in Fp. This turns out to only work for the leading order

coefficients. The main issue is that we would like to have a suitable notion of coefficient-wise

addition and multiplication so that we need not worry about “carry over” from arithmetic

operations. The problem is solved by working with Teichmüller representatives. At a prac-

tical level, this involves using p-adic coefficients which satisfy the relation ωp = ω in Zp.

A very non-trivial feature of the ring of integers is that all solutions to this equation are

actually elements of Zp.

55Observe also that for any rational number t ∈ Q, there is an adelic relation by taking the product over
all primes

∏
p
|t|p = 1

tR
, so in this sense, knowing “enough about t at all primes” provides a reconstruction of

the corresponding real norm.
56Given L a field extension of K, we can consider the ring of integers OL and OK , and consider the

algebraic closure of a prime ideal p of OK in OL. The resulting factorization into primes of OL, namely
pOK = pe11 ...penn OL. We say the extension is unramified at the prime p if all ei are 0 or 1, and ramified
otherwise. See Appendix S for additional discussion.
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This is, in fact, part of the more general line of development associated with the ring of

Witt vectors for a characteristic p field, something we review in Appendix P. The key point

is that for components of two Witt vectors U and V , we do have a natural mod pi+1 relation

of the form:

(U + V )i = Ui + Vi (16.8)

(UV )i = UiVi. (16.9)

For our purposes, we mainly need to apply this formalism in the case of the p-adic integers

Zp. In that setting we can present each field ϕ as well as the action in terms of its Teichmüller

representative. In this more abstract setting, we can now work with schemes defined over

Zp reduced modulo pa.

With this in place, we can now set up a very similar line of development to what we ini-

tially considered in the case of physics over finite fields of characteristic p. In this case, we can

choose to consider bosonic physical fields as locally specified by polynomials in Zp[u1, ..., uD].

All of the geometric flavor introduced previously still appears to make sense, provided we

interpret our geometric structures as varieties over the ground field Qp reduced modulo pa,

or even better, as schemes over Zp reduced modulo pa. This latter feature also illustrates

that restricting to just polynomials with Zp coefficients should provide a suitable notion

of “convergence” of these power series. Note that there is also a natural boundary which

emerges in these geometries, since Zp consists of elements with p-adic norm less than or equal

to one (i.e., it specifies a disk).

Instead of dealing with the ring of Witt vectors for Fp, we can instead consider the ring of

Witt vectors for Fq, a degree n field extension of Fp. When we do so, the same procedure just

outlined produces a variety over Qq, the degree n unramified extension of Qp. In this case,

we can again reference a ring of integers Zq, but now there are q Teichmüller representatives,

as specified by the q roots in Zq satisfying ωq = ω given by 0 and the (q − 1) roots of unity

in Zq. So in other words, we can also consider the lift of our analysis for Fq to the ring of

Witt vectors Qq. Summarizing, in the totally unramified case, one has Qq as specified by

adjoining a primitive (pn − 1)-th root of unity, and one has a π-adic expansion with π = p.

As another example, in the totally ramified case we can write Qq = Qp(p
1/n). This in

turn means that we should expect a π-adic expansion with π = p1/n a primitive root of p

in the unramified case. For more general (possibly ramified) field extensions, there is still a

π-adic expansion available, and π is then referred to as a “uniformizer”. See [214] for further

discussion. For further pedagogical discussion on these points geared towards physicists, see

for example references [12, 13]. For some additional discussion on ramification for algebraic

number fields and local fields, see Appendix S.

Proceeding in this way, one can also speak of the separable algebraic closure of Qp,

denoted as Qp. We comment that this space is not metrically complete, and adding the
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points of closure takes us to the space commonly referred to as Cp.
57

This illustrates a feature we have already encountered in our discussion of finite fields:

The notion of “dimensionality” itself is somewhat more subtle compared with the setting of

real spacetimes and target spaces. A common line of attack is to view each field extension of

Qp as adding a full dimension, but as we have already mentioned in our discussion of finite

fields, it is sometimes more appropriate to view such field extensions as filling in additional

points in a suitable “analytic continuation” of the space.

Now, from the perspective of our previous discussion where we focused on rational mor-

phisms:

ϕ : X 99K Y , (16.10)

we see that we can view the path integral in the p-adic context as associated with varieties

X and Y defined over a p-adic field. More precisely, once we fix N = pa, we can consider

morphisms involving the reduction mod N = pa, i.e.:

ϕ(N) : X(N) 99K Y(N). (16.11)

That this can make sense follows from the fact that we are free to reduce the ring of Witt

vectors mod pa to a ring W(N) and we are free to consider morphisms over schemes defined

over this ground ring. Given this set of morphisms, we can attempt to lift these back to

rational morphisms X 99K Y defined over our p-adic field. Proceeding in this way, we obtain

a regulated notion of a p-adic path integral, as specified by how large we take the exponent

a appearing in N = pa.

The formal procedure for defining correlation functions works much as we have already

specified in the context of morphisms of schemes defined over finite fields. In particular, we

note that the operators of interest will again be given by various C× valued characters. For

example, for a morphism to the affine line:

ϕ : X 99K A1(Qp), (16.12)

we can consider the character:

χ : Qp → C×, (16.13)

t 7→ exp(2πi{t}), (16.14)

where {t} just means that we drop terms mod p. In terms of our previous discussion

involving characters over finite fields, we can emphasize the mod pa nature of our operators

57More generally, given a field K with a norm, it is customary to write K to denote a separable algebraic
closure, and CK to denote its metric completion.
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by considering operators such as:

O(t) = exp

(
2πi

pa
{ϕ(t)}Zp

)
, (16.15)

namely we only consider the portion of the morphism valued in Zp. With the eventual aim

of passing to a smooth p-adic limit, it seems clear that we can use either presentation of the

character map.

Now, carrying things out in this way, we also see that the path integral as specified by

morphisms reduced mod pa comes with a natural notion of ordering which is complementary

to the one we discussed for finite fields. Recall that in the finite fields case, we face the

subtle point that because “everything is periodic,” there is at best only a local notion of

time ordering available, and this itself depends on choosing a particular generator for the

additive group (Fp,+).58

In the p-adic context, we see that there is another way to partially order elements, as

specified by the p-adic norm. Observe that for t ∈ Qp, we can write any non-zero element as

t = pmu for some integer m and |u|p = 1 of unit norm. This is very akin to what we have in

radial quantization of a 2D conformal field theory, where the radial direction of C× serves as

a notion of time, with transverse circles serving as the spatial direction. This notion of p-adic

ordering is thus quite natural. Indeed, observe that for each p-adic slice (as specified by a

power of pm), we get the unit norm elements. So, we can evaluate at each shell sequentially.

Let us also note that this is different from the ordering one would get from the Archimedean

completion of the rationals Q inside R. In that sense, there is an order of limits issue which

affects how we evaluate our path integral over morphisms. See figure 8 for a depiction of

this notion of “radial ordering”.

In fact, a helpful feature of working over the p-adics is that we can then also speak of an

emergent topology in the large a limit. In the case of characteristic p varieties, we already

saw hints of this emergent structure in our discussion of crystalline cohomology. Here, we

see it appearing again, albeit in a somewhat different guise. Let us also note that this also

provides a more refined topology than both the Zariski topology and the étale topology that

are implicit in our earlier treatment of characteristic p spaces. Returning to our very brief

discussion of symmetric bilinear forms defined on T ∗X⊗T ∗X, we see that the corresponding

p-adic expansion:59

hµν =
∑
i

h(i)µνp
i, (16.16)

also means that there is a suitable notion of a metric for such schemes.

As an amusing application, consider points in the 2D “spacetime” obtained from Qp×Qp

58Recall, however, that we do have a notion of “fast and slow” modes as specified by the degree of a
morphism. This in turn provides a notion of past and future.

59Compared with earlier, we now label the spacetime indices by Greek rather than Latin indices since here
a refers to the exponent of a prime power.
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Figure 8: Depiction of radial quantization for Qp. This provides a notion of “time ordering”
for evaluating correlation functions generated by the path integral for morphisms between
p-adic varieties.

with hµν specifying the standard symmetric bilinear form of Minkowski space, namely we

can set:

hµνx
µxν = (x0)2 − (x1)2. (16.17)

If we restrict to coordinates valued in the rational numbers, we can speak of timelike values

hµνx
µxν > 0 and spacelike values hµνx

µxν , as well as the lightcone hµνx
µxν = 0. In the

extension to Qp where there is no complete ordering, only the notion of the lightcone persists.

Another comment here is that in the reduction modulo pa, we see that a lightcone can take

the form:

x0 = x1 + αpa, (16.18)

which makes sense in any characteristic. So in other words, a single lightcone defined in

characteristic pa breaks up into several disjoint lines inside of Q × Q. Consider the large a

limit. In the real topology these lines get further and further away from one another, but in

the p-adic topology these lines get closer and closer together!

Of course, the p-adic numbers are also rather far removed from our usual notions of metric

and distance, at least as far as they are applied in many continuum physical problems. We

now argue that in the large pa limit, this sort of structure also naturally appears. To see

why, we note that in evaluating our correlation functions, we actually make implicit reference

to the metric on C×. This follows simply from the fact that our action principle is really

formulated in terms of additive characters of the given ring, namely we have:

exp

(
2πi

N
S

)
∈ S1 ⊂ C×. (16.19)
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Convergence with respect to the metric on C× is of course a very different notion from that

specified by the p-adic norm, and gives rise to a completely different sort of topology and

notion of “proximity.” In the context of our quantum theory, however, we see that actual

probabilities / expectation values as computed by the path integral still implicitly make

reference to this real metric structure. This raises an important subtlety: if we blindly

take the entire infinite series in the p-adic expansion, then we will often produce numbers

in Zp which are no longer integers. Even so, the notion of a map to C× still makes sense

because when we reduce modulo pa, we get back an integer and the corresponding character

is well-defined.

Another helpful comment here is that Mahler’s theorem [215] tells us that for any con-

tinuous function f : Zp → Qp, we can obtain an arbitrarily good approximation using a

convergent sequence of polynomials fn ∈ Qp[x]. In this sense, the restriction to polynomials

we have been considering earlier is actually not much of a restriction at all, at least in the

p-adic setting!

Evaluating on a given physical field configuration, the action can still converge in either

topology, it just depends on how we take the large N limit. One might argue that for

evaluating correlation functions the actual quantity of interest is:

1

pa
S = Sa +

1

p
Sa−1 + ...+

1

pa
S0, (16.20)

with the leading term set by Sa. In this case, convergence is best thought of in terms of the

usual real numbers. We can pass between these two expansions through the formal mapping:

Qp ↔ R (16.21)

ℏ =
pa

2π
↔ ℏ = 1 (16.22)

Sj ↔ Sa−j . (16.23)

To get a character map which converges in C×, we need to truncate the p-adic expansion so

that p−aS remains small in the real topology. This means that for a fixed value of N = pa

we would need to truncate to terms of degree pa−1 or lower:

t ∼
a−1∑
j=0

tjp
j and S ∼

a−1∑
j=0

Sjp
j. (16.24)

We take this to mean that as we pass to the extremely quantum regime where ℏ → ∞,

we actually recover a semblance of standard quantum fields. Note also that the “classical

limit” corresponds to holding the expansion degree fixed at some maximal jmax and sending

a→∞.

So, depending on how we take our large N limit, we can approach either the p-adic or real
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topology. If we take the limit at the level of the action, then we pass to the p-adic topology

whereas if we take the limit in the space of characters valued in C×, then we instead pass to

the real topology. In the latter case where we use the truncated p-adic expansion of equation

(16.16), this also provides us with a metric on our spacetime. Let us note that in the lattice

approximation discussed in section 3 as well as the worked example in Appendix A, there is

a sense in which we are still referencing the standard real topology by performing “nearest

neighbor differences.” In such situations, the passage back to the continuum is the standard

one. In the more abstract setting based on polynomials, more care as warranted, but the

above procedure shows how to accommodate this situation as well.

Our plan in the remainder of this section will be to study some of the structures we

can expect to recover in the case where we first take an order of limits where our physi-

cal field configurations are associated with morphisms between p-adic varieties. This is the

“purest” notion of lifting our characteristic p considerations to a full p-adic expansion. That

being said, we will also aim to see how our considerations fit with other notions of physical

and mathematical p-adic structures, but we defer this to sections 18, 19 and 20. A related

comment is that the proper treatment of differential equations requires us to specify some

additional topological structure, as would come from a suitable analytification of the under-

lying p-adic spaces, a topic we will motivate from a physical perspective in section 20. So

long as we are willing to tolerate various formal manipulations (as is customary in physics

anyway), then the ordering of topics as presented here should not cause much of an issue.

Our first aim will be to show that our characteristic p starting point provides us with a

way to specify an action principle. At least in suitable neighborhoods, we can formulate our

field configurations in terms of power series in local variables. That also means that we can

take derivatives of these power series, much as we would in working over R and C. In fact,

precisely because such formal power series expansions provide a general method for solving

many differential equations, we can essentially borrow the corresponding solutions to these

differential equations over the real and complex numbers, but now working in the p-adic

setting. Aside from the fact that we are here being somewhat glib about the underlying

analytic structure associated with our differential equations, we also face the fact that the

radius of convergence for these power series is often different as we vary the ground field. As

a canonical example, consider the exponential power series:

exp(t) =
∑
n≥0

tn

n!
. (16.25)

For t ∈ C, this converges on |t| <∞, but for t ∈ Cp, the radius of convergence is p
−1/(p−1) < 1,

namely the series converges for |t|p < p−1/(p−1) < 1 (see Appendix Q for a brief review). An-

other prominent example which figures in the study of local systems with p-adic monodromy
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is the logarithm function, with power series expansion:

log(1− t) =
∑
n≥0

− tn

n
, (16.26)

which has radius convergence of one, namely the series converges for |t| < 1, much as in the

real and complex setting. Conversely, there are power series which we can define which have

a large p-adic radius of convergence there, but with a rather small radius of convergence over

the real and complex numbers.60

Our second aim will be to illustrate that we can make sense of a quantum theory in

this setting. In particular, we discuss the interpretation of the Schrödinger equation, as

well as wave functions, and how to extract probabilities valued in the real numbers. The

main stumbling block here is that we will need to give an interpretation of quantities such

as the Hamiltonian operator when they have p-adic valued eigenvalues rather than real

valued eigenvalues. Since we have already given a quantum mechanical interpretation for

the Hilbert space of states associated with physics in the characteristic p setting, there is

a lifting procedure we can adopt to obtain a corresponding Hilbert space of states in the

p-adic setting. This means, for example, that the wave functions of our system will still be

complex valued, but that the field configurations themselves will be p-adic valued.

16.1 Action Principles

The first issue we face in trying to specify a field theory with p-adic valued fields is how

to make sense of classical mechanics and quantum mechanics. Our approach in previous

sections has mainly centered on the structure of the action, so we begin by revisiting the

interpretation of this quantity in our setting. The main idea is that when we consider the

character exp(iS[ϕ]/ℏ) with ℏ = pa/2π, we can consider a formal sequence where we increase

the exponent a. In this sense, each individual action can be evaluated using the same finite

sums we have been using in the characteristic p setting. In fact, if we retain this definition,

then our physical fields will, in the simplest setting have coefficients in Zp rather than Qp.

If, however, we absorb the powers of ℏ into our definition of the fields, then we can consider

the closely related character exp(2πi{S[ϕ]}), but where now ϕ can have p-adic coefficients.

Here, we have included the brackets “{” and “}” to serve as a reminder that the action is

still valued in the p-adics, but that we are then applying a character map to pass over to

60As an extreme example, consider the series defined by:

f(t) =
∑
n≥0

n! tn. (16.27)

Using the same estimates presented in Appendix Q, we have that the p-adic radius of convergence is p1/(p−1).
Over the real and complex numbers, however, the only value of t which leads to convergence is the trivial
case of t = 0.
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C×.
The reason we have belabored this point is that since we are assuming p-adic valued

physical fields, it is a bit awkward to directly work with quantities such as p-adic integrals,

which would return real numbers for the measures of sets. In a sense, we are still introducing

a measure, but one which is induced from working with the characters valued on C×. Let

us also remark that there is a notion of residue integral as developed by Coleman [216] and

Berkovich [217].

With these comments in place, we can now proceed to write down Lagrangians, much as

we would in the real setting. As an example, consider morphisms from the affine line to the

affine line, as specified by maps ϕ : A1(Qp)→ A1(Qp). We can work either with polynomials

of bounded degree, namely elements of Qp[t], or as is customary in the physical setting,

we can view this as implicitly specifying a power series for Qp[[t]]. We can also extend to

rational functions provided we specify prescribed boundary conditions at the locations of the

poles. In any case, the main point is that we have a variable t, and so we are free to take

“ordinary derivatives” of these expressions. Given such a ϕ(t), it then makes sense to write

down Lagrangians such as:

L[ϕ] =
1

2
(∂tϕ)

2 − V (ϕ), (16.28)

just as we always would. The Euler-Lagrange equation simply specifies a differential equation

for ϕ(t), and makes sense in this setting as well. By the same token we can also introducing

a conjugate momentum π(t), and consequently it also makes sense to define a Hamiltonian

such as:

H[ϕ, π] =
π2

2
+ V (ϕ), (16.29)

and develop Hamilton’s equations for motion through the corresponding phase space. By

design, none of this is very different from the standard setting, all we are doing is interpreting

these expressions as having p-adic coefficients. All of this extends in the standard way to

higher-dimensional p-adic spacetimes, so we leave this implicit.

There is also not much difference in how we set up the explicit path integration provided

we remember to always reduce mod pa and only later take a→∞. We shall not attempt to

determine whether this limit always exists, but will simply assume it does and explore the

consequences. As far as correlation functions go, the natural quantities to consider are again

closely tied to C× valued characters such as exp(iϕ(t1)/ℏ), in the obvious notation.

Before proceeding to a discussion of the quantum case, it is already interesting to

study the special field configurations which produce a stationary complex phase. In the

Archimedean setting, such stationary phase contributions are interpreted as “classical” con-

figurations because the ones for which the complex phases of quantum mechanics can all add

up constructively for a macroscopic object. By abuse of terminology, we can again refer to

these as classical configurations, though the fact that we are working p-adically means that

there is an inherently quantum nature to our discussion. Putting aside such concerns, we
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observe that the principle least of action will produce a p-adic differential equation for ϕ(t).

To illustrate, consider the case of the harmonic oscillator, with Lagrangian:

L =
1

2
(∂tϕ)

2 − Ω2

2
ϕ2, (16.30)

where Ω ∈ Qp is some p-adic number which in the real setting we would interpret as a

characteristic frequency. The Euler-Lagrange equations describe configurations of stationary

action, and amount to a ϕosc(t) which satisfies the p-adic differential equation:

∂2t ϕ(t) = −Ω2ϕ(t). (16.31)

The general solutions take the form:

ϕosc(t) = A+ exp(iΩt) + A− exp(−iΩt), (16.32)

which we interpret as a power series in the variable t. Here, i =
√
−1 ∈ Qp(

√
−1), and

A± ∈ Qp(
√
−1) such that ϕ(t) is invariant under Gal(Qp(

√
−1)/Qp), in the obvious way.

These expressions converge provided we restrict to |Ωt|p < p−1/(p−1). See also [36, 218] for

some related discussion of the p-adic harmonic oscillator.

Recall that in the real setting, one would get a very similar set of solutions, but Ω would

have the interpretation as setting the period of oscillation, namely Tperiod = 2π/Ω. Here,

such a notion is more problematic, because the analog of 2πi in the p-adic setting is rather

subtle. The main issue is that there is no clear notion of a non-constant “periodic function”

in the p-adic valued setting. Indeed, observe that for any putative f : Qp → Qp, periodicity

would mean f(t + pmT ) = f(t), but this in turn forces f to be constant since pmT has

decreasing p-adic norm as m increases. We also observe that in that setting, the domain of

t is not restricted at all.

Our analysis of fermonic systems and supersymmetry also naturally extends to the p-adic

setting, since we essentially formulated our entire analysis using in terms of polynomials of

arbitrary degree anyway, and we can apply a standard lifting from characteristic p to the p-

adics. Indeed, as we already remarked in our discussion of crystalline and rigid cohomology,

the supersymmetric quantum mechanics that we introduced implicitly makes reference to

such a lifting in the first place.

16.2 Aside on Moduli Spaces

Now, in the standard physical setting, there is a well-known interplay between the vacua of

certain supersymmetric field theories and the associated moduli of the target space. This

is especially prominent in the case where the field theory is a non-linear sigma model with

target space a Calabi-Yau variety. When available, it can prove convenient to characterize

this non-linear sigma model as the infrared fixed point of a gauged linear sigma model (of the
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sort briefly discussed in section 14). Computations of quantities such as the period integrals

can then be recast in terms of correlation functions in the corresponding field theory.

One might ask whether we should expect a similar correspondence to hold if we simply

switch to characteristic p or the p-adics. An immediate objection is that the notion of a

“period integral” itself becomes somewhat more challenging to define in this setting. For

example, in the case of a Calabi-Yau n-fold with n odd, we would need to integrate the

holomorphic n-form over a real odd-dimensional cycle. The situation becomes even more

problematic since we would seem to need a notion of “contour integration” which may or

may not persist.

On the other hand, one of the governing features of these sorts of moduli problems is the

existence of a Picard-Fuchs differential operator LPF which acts on the periods Π via the

equation:

LPFΠ = 0. (16.33)

The main point we wish to emphasize is that because our analysis has been largely algebraic,

the existence of this sort of Picard-Fuchs differential equation also makes sense in the p-adic

setting. So, we can at least formally definition a notion of moduli and period integrals as

specified by the Picard-Fuchs differential equation which they satisfy.

In fact, historically, at least, building examples of “well-behaved” p-adic differential

equations often has a strongly geometric character of this sort. This in turn has a re-

markable correspondence with counting points on geometries in characteristic p! For some

discussion of the associated “Dwork theory” in various contexts, see for example refer-

ences [157–159, 219, 160, 81, 220, 83–85]. From our present perspective, this is also rather

natural to expect because the process of counting points on a characteristic p variety is

closely tied to the cohomology theory specified by our supercharge(s) Q.

16.3 Quantum Considerations

The analysis of the previous subsection was classical in nature in the sense that it involved

specifying an action principle, and then extracting various p-adic differential equations from

a principle of least action. This also extends to other geometric quantities such as the moduli

space of a target space, where there is again a differential equation governing the quantities

of interest (such as the Picard-Fuchs equations for periods).

Here we ask whether our notion of path integral provides us with a sensible notion of a

quantum theory. For some complementary perspectives on p-adic quantum mechanics, see

for example [36, 221]. To a certain extent, we can just mimic what we have already done

in the even more extreme case of working over a finite field. Recall that in that setting, we

introduced a basis of states as specified by morphisms, and then constructed the free vector

space over C. In this setting, the phase factor of the path integral exp(iS/ℏ) is a character

map. Nothing much changes in the p-adic setting if we set ℏ = pa/2π with a→∞. Similar
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considerations apply to the construction of operators: So long as we confine our analysis

to correlation functions involving characters built from physical fields such as exp(if(ϕ)/ℏ)
with f some polynomial in the physical field, it seems clear that we can at least formally

compute correlation functions.

On the other hand, given the fact that we now have access to additional structure such as

p-adic differential equations, we might ask whether we can also demand more, such as a p-adic

Schrödinger equation. For this to make sense, we can formally think of a “wave function”

as a power series with p-adic coefficients. This would of course obscure the Born rule, but

it at least illustrates that at the level of spectral theory, we can speak of a formal space

with linear operators which act on it. What is somewhat more awkward is that refining this

structure to include a Hermitian pairing (or even a norm) with desired physical properties is

more suited to working over C; this is simply because the quadratic extension Qp(
√
−1) does

indeed have a notion of “complex conjugation,” but it naturally leaves open the question

about how to treat vectors over the field Cp. On the other hand, it is not clear that we

need to make sense of such an operation since if we deal with just character valued maps,

we already have the standard complex conjugation operation available from working on C×.
Since, however, our procedure is mainly algebraic in nature, we can proceed by considering

a basis of formal functions constructed locally as power series in Cp[[x]]. Then, we can

introduce linear operators such as the position and momentum operators Opos and Omom in

terms of their action on these:61

Ôposf(x) = xf(x) (16.34)

Ômomf(x) =
1

i
∂xf(x), (16.35)

where i =
√
−1 ∈ Cp. In the p-adic setting, the significance of the factor of 1/i is more

obscure because as we already mentioned, we do not have a direct notion of inner product

directly on Cp, but rather must appeal to a character map construction. One can then, for

example, construct a p-adic Hamiltonian operator such as:

Ĥ = −α∂2x + βV (x) (16.36)

for some α, β ∈ Qp, and study the corresponding eigenvalue problem for the p-adic differential

equation:

Ĥf(x) = Ef(x) (16.37)

61The present treatment clearly favors a position basis, and one might ask whether we can work in terms
of the conjugate momentum basis instead. We can of course, define a related power series expansion in the
momentum variables involving elements of Cp[[k]], but to complete the circle of ideas, we would need an
analytic notion of a “Fourier transform,” something which is more awkward to come by in the algebraic
setting. We can, however, perform such a Fourier transform by working in terms of the C× valued characters
of operators, so we expect such a relation to hold even here. It would be interesting to spell out such a
correspondence in more detail, but such concerns will not play much of a role in what follows.
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for E ∈ Cp. Of course, we can generalize beyond just position and momentum variables to

include quantities such as spin and angular momentum.

Now, in the Archimedean setting the Hamiltonian is the generator for time translations,

and so it is natural to ask whether this also works in the present case. One’s first inclination

might be to consider a purely p-adic time evolution by introducing a Schrödinger equation

such as Ĥf(x, t) = γ∂tf(x, t). The main difficulty compared with the Archimedean situation

is that setting γ = iℏ is not particularly canonical since we have already mentioned the

difficulties with specifying a purely p-adic notion of Hermitian conjugation.

At a practical level this sort of notion is not particularly necessary to make sense of

time evolution. Again taking our cue from the finite field case, we assume that we our

linear operator Ĥ is diagonal. In that case, it makes sense to construct a character map for

each individual eigenvalue, namely exp(iE/ℏ) ∈ C× for each E a p-adic eigenvalue. For a

rational morphism ϕE : X 99K Y locally expressed in terms of a p-adic power series, it is also

clear that the physical state |ϕE : X 99K Y ⟩ is an eigenstate of exp(iĤ/ℏ) with eigenvalue

exp(iE/ℏ). Then, for a collection of such morphisms, we can even build linear combinations

of these energy eigenstates. This provides us with a notion of unitary time evolution on more

general physical states. A final generalization amounts to asking about what happens when

Ĥ is presented as a matrix which is not diagonal. Here, we make the assumption that all

entries in Ĥ are given by elements in Cp, but that all eigenvalues are p-adic valued. In this

case, we adopt the practical procedure of working modulo pa. Then, we can always replace

Ĥ by a representative with coefficients in the ring of integers for Qp, and which we truncate

at order truncated at order pa, which we denote as {Ĥ}pa . Since that matrix has entries

which also make sense over C, the evaluation of the character in this case is well-defined.

This shows that the notion of time evolution does make sense in the p-adic setting. Observe

also that in the regulated case where all eigenvalues of Ĥ are assumed to be in Zp and we

set ℏ = pa/2π, the match to Archimedean notions of time provides us with a “minimal time

step” as captured by tmin = 2π/pa ∈ R.
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17 State Counting and Period Integrals

As an intriguing application of these considerations, we will also illustrate how the structure

of certain Picard-Fuchs equations prevalent in the study of certain supersymmetric systems

naturally appears in this setting. The main idea is that arithmetic moduli space problems

can be analyzed in terms of a corresponding p-adic differential equation. This enters in a

very concrete way in a number of physical settings, especially in the study of supersymmet-

ric vacua with eight or more real supercharges. Celebrated examples include the analysis

of 4D N = 2 quantum field theories using Seiberg-Witten theory [222, 223], as well as their

counterparts involving compactifications of type II string theory on a Calabi-Yau threefold.

So, at least at a formal level, we should expect there to be a natural link between the cor-

responding mathematical objects appearing in string compactification and their arithmetic

counterparts [79–85]. Of course, in matching to physical considerations we ought to demand

more, and we expect the considerations spelled out earlier to provide such a mode of analysis.

Roughly speaking, we ask the following physically motivated question. We know that

for 4D N = 2 supersymmetric vacua there is a Coulomb branch of moduli space with flat

coordinate(s) u. Once we couple to gravity, we expect there to be a maximum field range

we can entertain before the effective field theory breaks down. Working in Planck units so

that u is dimensionless, we have:

|u| ≤ |umax|, (17.1)

Where here, we have presented the relation in the case of a one-dimensional Coulomb branch.

It is also natural to posit that there is an infrared cutoff, which we interpret as a minimal

step size to the field range allowed in our model. The assumption of arithmetic discretization

amounts to the condition that both the complex phase and magnitude of u are discretized.

Specializing to the case of of real values62 for u, we assume:

umax

umin

= N ∈ Z, (17.2)

and we shall interpret this in the same way already outlined in section 3, namely we work

in terms of an effective ℏ = N/2π. For more general complex values of u, it seems natural

to restrict to the case where each u is actually an algebraic number, i.e., belongs to a finite

field extension of Q.

Having motivated our approach to discretization, we now ask about the profile of our

theory in the special case where N = pa with a taken very large. It is here that we enter the

realm of a p-adic geometry for the Seiberg-Witten curve, and its reduction on the residue

field to a geometry over a finite field. Our plan in the remainder of this section will be to

study the resulting period integrals in this setting, as well as the potential relations between

BPS state counting and the Zeta function of the curve. To this end, we first recall some

62As a brief aside, one reason for restricting to real values is to demand time-reversal invariance in the 4D
theory, much as in reference [224].
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basic elements of Dwork theory for the Legendre family of elliptic curves, and then turn to

an application and generalizations of these considerations in the context of Seiberg-Witten

theory.

17.1 Periods of an Elliptic Curve

To make our discussion a bit more concrete, let us consider the explicit example associated

with the Legendre family of elliptic curves:

y2 = x(x− 1)(x− u), (17.3)

with u ∈ P1\{0, 1,∞}. A classic question in arithmetic geometry is to determine the number

of Fp rational points as we vary u. This in turn can be related to the Picard-Fuchs differential

equation associated with this moduli problem [157]. We now briefly review this following for

example reference [225] and then present a few physically motivated generalizations.

We begin by interpreting the elliptic curve over C where there are well-known expressions

for the associated period integrals. These involve integrals of the meromorphic one-form dx/y

as given by:

ω(u) =
dx√

x(x− 1)(x− u)
. (17.4)

We can obtain the Picard-Fuchs differential equation by also computing further derivatives

with respect to u:63

∂uω =
1

2

dx√
x(x− 1)(x− u)3

(17.5)

∂2uω =
3

4

dx√
x(x− 1)(x− u)5

. (17.6)

Then, one can explicitly verify that a specific linear combination of these derivatives can be

expressed as a total derivative:

u(u− 1)∂2uω + (2u− 1)∂uω +
1

4
ω = −1

2
d

(√
x(x− 1)(x− u)

(x− u)2

)
, (17.7)

so the corresponding period Π satisfies:

u(u− 1)∂2uΠ+ (2λ− 1)∂uΠ+
1

4
Π = 0, (17.8)

which is solved by the hypergeometric function F (1
2
, 1
2
; 1;u) (i.e., 2F1(

1
2
, 1
2
; 1;u)). More gen-

63Strictly speaking we should perform this computation using the Gauss-Manin connection, but because
u is a flat coordinate, the present treatment suffices.
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erally, recall that the hypergeometric functions F (a, b; c;u) satisfy the differential equation:

u(u− 1)∂2uF + ((a+ b+ 1)u− c)∂uF + abF = 0, (17.9)

which in turn can be expressed in terms of a power series:

F (a, b; c;u) =
∑
m≥0

(a)m(b)m
(c)m

1

m!
um, (17.10)

where in the above, we have:

(a)m =
Γ(a+m)

Γ(m)
=
a(a+ 1)...(a+ n− 1)

.
(17.11)

The appearance of such solutions to differential equations is rather ubiquitous in mathe-

matical physics, and readily extends to a variety of settings. For example, in reference [226],

the case of the Bessel function J0(u) and the p-adic interpretation of its differential equation

is also considered in some detail (see also [227]).

17.2 BPS States and Seiberg-Witten Curves

Such period integrals also play a prominent role in a number of theories with eight real

supercharges, including those which appear in Seiberg-Witten theory. In fact, the original

presentation of a Seiberg-Witten curve given in [223] involved an elliptic curve in the Leg-

endre family (up to an unimportant shift in coordinates), and this can also be generalized

in numerous ways (see e.g., [222]). From our present perspective, what is important in

Seiberg-Witten theory is that we specify a genus g curve with marked points, along with a

meromorphic one-form λSW . Integration along the A- and B-cycles of the curve produce a

set of period integrals, denoted as:

aDi =

∫
Bi

λSW and aj =

∫
Aj

λSW , (17.12)

which depend on a set of flat coordinates for the moduli space, ui. Moreover, the period

matrix of the curve is encoded in the matrix:

τij =
∂aDi
∂aj

. (17.13)

All of these period integrals are subject to Picard-Fuchs differential equations. See for

example [228,229] for some examples of this sort. The important point for us is that at least

in the region of large complex structure, these differential equations have explicit power

series presentations with rational coefficients, and this in turn means that they also exist

135



p-adically.

Compared with the complex analytic case, the continuation of these solutions to other

regions of moduli space is more challenging. This is one of the essential features in the

study of p-adic differential equations, namely that there exists a suitable notion of “Frobe-

nius structure” which enables one to extend these power series solutions to a larger radius

of convergence. Roughly speaking, one first considers the reduction modulo p, and the cor-

responding Frobenius action on the characteristic p geometry. Then, a suitable lift back to

a p-adic space provides a filtration on the differential modules of the geometry. This refine-

ment can then be tracked, and provides a way to specify the profiles of these solutions to

the differential equations.

Another quite important element in the physical theory is the location of massless states,

as obtained by varying the moduli of the Seiberg-Witten curve. If one were to integrate

out such states, one would find a singular effective action. Such singular behavior is also

reflected in the geometry of the Seiberg-Witten curve. For example, in the Legendre family

(written in Seiberg-Witten’s coordinate system) y2 = (x− 1)(x+1)(x− u), the singularities
at u = +1 and u = −1 are associated with states with magnetic charge becoming light,

while the singularity at u = ∞ is associated with the limit of large W -boson mass. In the

process of passing around such a singularity, the periods aDi and aj undergo monodromy,

being acted upon by an element from Sp(2g,Z).64

Does the notion of “monodromy” have a p-adic counterpart? To a large extent, the key

point for us is that there is a corresponding monodromy action in both the complex analytic

setting and the p-adic setting, a point emphasized for example in [230]; In the complex

analytic setting this involves limiting mixed Hodge structures, while in the p-adic case there

is again a suitable notion of weights. A quite abstract and general account can be found in

chapters 20 and 21 of reference [231], as well as references therein. The main idea is to frame

in purely algebraic data the singular structure of solutions to p-adic differential equations.

In this algebraic setting, we can then observe that there is a notion of monodromy which

acts on appropriate cohomology groups of the ambient geometry, and its reduction mod p

(i.e., reduction to the residue field).

The structure of monodromy follows basically the same contours as what was already

outlined in our discussion of the winding modes and the étale fundamental group. To set the

stage, we first provide a more formal treatment of the local monodromy group action in the

complex analytic setting, following the discussion in, for example [230,232]. Suppose we are

considering a family of elliptic curves Eu such that there is a singular point at u = u∗. We

can construct a corresponding disk ∆∗, and consider the fundamental group π1(∆
∗, u) ≃ Z,

where u is now associated with a generic point in the family. The fundamental group specifies

64We remark that in many physically relevant situations, including that associated with the Legendre
family of of curves) the isogeny class of the curve is quite important so one is limited to a finite index
subgroup of Sp(2g,Z).
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for us a monodromy group action which acts on the cohomology of the elliptic curve:

π1(∆
∗, u) : H1(Eu,Q)→ H1(Eu,Q), (17.14)

and we label the corresponding “monodromy generator” as T . This is a quasi-unipotent

operator, and we can also associate to it a nilpotent monodromy operator N = log(1+T ).65

In the arithmetic setting there is a close analog of the fundamdental group provided by

the inertia group of a field extension, and this extends to varieties over non-Archimedean

and finite fields as well. To illustrate, consider K a non-Archimedean field (in our case this

is just a finite extension of Qp), and a field extension L/K. Then, we can also form the

residue fields by quotienting by the ring of integers OL and OK , respectively. Call these

residue fields κL and κK . Then, we have the short exact sequence:

1→ IL/K → Gal(L/K)→ Gal(κL/κK)→ 1, (17.15)

and we refer to IL/K as the “inertia group”. To see the connection with the étale fundamental

group, observe that if we take L = K the algebraic closure of K, then Gal(κL/κK) ≃ Ẑ.
Now, from general properties of ℓ-adic cohomology theory, we also have that Gal(L/K) acts

on H1(Eu,Zℓ), and as such, so too does the inertia group. The generator of the inertia

group serves to specify the action of “monodromy” in the p-adic setting. Importantly, there

is a generalization of these notions to the case of rigid cohomology simply based on the

algebraic structure of the corresponding p-adic differential equations for the solutions to the

Picard-Fuchs differential equations. As such, we see a quite strong analogy between the

physical and arithmetic structures present in both settings. In Appendix T we present a

first approximation of these notions by tracking the analog of monodromy actions on the

ℓ-adic cohomology of an elliptic curve.

As an additional remark, we note that we have now seen the appearance of two natural

actions on the rigid cohomology groups of a variety defined over a finite field Fq; one is

associated with the action of the Frobenius map F : H i → H i, while the other is associated

with the nilpotent monodromy transformation N : H i → H i. One can also establish that

these two operations satisfy a sort of “braid relation” (see e.g., [230,232]):

N ◦ F = qF ◦N. (17.16)

The existence of such arithmetic structures is actually somewhat surprising, and hints at

the existence of a deeper physical interpretation of the associated rigid and ℓ-adic cohomology

groups. The natural context for these issues to crop up in Seiberg-Witten theory is in the

structure of the theory once we attempt to couple to gravity, and its relation to the field range

of the Coulomb branch parameter u. Following up on our general philosophical remarks in

65Recall that a nilpotent operator N is one such that Nk = 0 for some k ∈ Z>0. A quasi-unipotent
operator T is one such that Tm has eigenvalues equal to one for some m ∈ Z>0.
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section 3, we expect to be able to approximate the value of u by an algebraic number, and

as such, we can view it as having a π-adic expansion (π being some possibly non-trivial root

of p):

u =
∑
i

uiπ
i, (17.17)

in the obvious notation. Now, the case of large field range in the Archimedean setting is

sometimes associated with the case of small p-adic norm. So, the p-adic extension of Seiberg-

Witten theory provides us with at least partial access to the structure of the theory at large

field range, as we move closer to the Planck scale. The important point for us is that the

notion of a cohomology group, and in particular the notion of monodromy around a singular

point still makes sense.

Given our previous interpretation of rigid cohomology groups for curves over a finite field,

it is quite tempting to view H1
rig(Eu,L) as a Hilbert space of states for the particle which is

becoming massless. Here, L refers to a line bundle over the elliptic curve. We shall also be

somewhat cavalier with both the specific coefficient ring as well as cohomology theory (be it

rigid or ℓ-adic cohomology) since we expect the “generic case” to make sense physically.

To illustrate, we sketch how we expect this to work in the case of a one-parameter family

of Seiberg-Witten curves, as parameterized by some Coulomb branch parameter modulus

u. We also neglect the contributions from mass parameters, which can also be included as

additional moduli (i.e., by working with a punctured curve with additional decoration at the

punctures). So, consider the BPS formula for the central charge of electric charge nelec and

magnetic charge nmag:
66

Znelec,nmag(u) = neleca(u)− nmaga
D(u), (17.18)

where, as already mentioned, we have neglected any contributions from mass parameters.

Now, the central charge is itself a period integral, and as such, it is governed by a Picard-

Fuchs differential equation.

Our periods a and aD are to be viewed as solutions to a Picard-Fuchs differential equation

satisfied by a suitable meromorphic one-form (the Seiberg-Witten differential), as captured

by a section of Ω1(L), where L is a line bundle which depends on the model in question.

For example, in the case of the Legendre family (pure SU(2) gauge theory, but where we

have shifted the origin of moduli space from u = 0.) considered by Seiberg and Witten in

reference [222], λSW ∼ (x− u)dx/y, the differential is a section of the space of meromorphic

(1, 0)-forms with vanishing residue. So, in this case we would just set L = O, the structure

sheaf of the curve. From all that we know about Seiberg-Witten theory, we can also predict

the quasiunipotent monodromy matrix associated with the rigid and ℓ-adic cohomology

groups in “passing around” the singularities in the u-plane: All of these are associated with

66In our conventions, the central charge is related to the mass as M2 = 2|Z|2.
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a Kodaira fiber of type I2, so in our conventions the monodromy action is:

A2 =

[
1 −2
0 1

]
, with A =

[
1 −1
0 1

]
. (17.19)

In Appendix T we provide an explicit example illustrating this monodromic structure.

Now, by assumption, we have that a particular state of fixed electric and magnetic charge

is becoming light at the point u = 0. Call the central charge for this case Z(u). One way to

package this change in BPS masses under this Frobenius structure is through the ratio:67

ξ(u) ≡ (−1)(p−1)/2Z(u
p)

Z(u)
. (17.20)

On general physical grounds, approaching the massless point signals the approach to a phase

transition, and as such, we should expect some sort of singular behavior [233,234].

To make this more concrete, we introduce a generalized Zeta function over Fq, as obtained

by tracking the action of the Frobenius structure on each H i(Eu,L), which we denote by:

F (i) : H i(Eu,L)→ H i(Eu,L). (17.21)

Then, we can form a characteristic polynomial:68

Pi(z) = det(I− zF (i)), (17.22)

and the Zeta function:

ZCu,q(z) =
P1(z)

P0(z)P2(z)
. (17.23)

This generalizes to higher dimensions by taking the product over all Pi with odd i in the

numerator, and all Pi with even i in the denominator. Compared with the standard “Zeta

function for a curve,” the main alteration is to allow an arbitrary line bundle. For further

review on the Zeta function for a sheaf, see for example reference [156].

Quite remarkably, these physical expectations are borne out by the arithmetic structure

of the Picard-Fuchs differential equation! Along these lines, we consider the same Seiberg-

Witten curve, but now over the finite field Fq with modulus v. Let u ∈ Zq denote the

Teichmüller representative of v. Then, we can form the product:

Ξ ≡ ξ(u)...ξ(F q−1(u)), (17.24)

67Our definition of ξ is the inverse of the one typically considered in the math literature. Our reason for
choosing this convention has to do with the physical interpretation of ξ in this case.

68Our convention follows that in [156]. Observe that the natural range for the index i is from i = 0, 1, 2
whereas the curve is “one-dimensional”. In general, the cohomology theories of this type are non-trivial up
to 2D with D the dimension of the variety.
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where F (u) = up. The main case which has been analyzed in the literature is the special

situation where L = O, in which case Ξ turns out to be a zero of the Zeta function ζEu,q(z),

precisely what we expect based on physical considerations.69

Another simple class of examples are given by the non-compact elliptically fibered K3

surfaces with constant j-function, which are sometimes referred to as H0, H1, H2, D4, E6,

E7, and E8 (see e.g., [235] and references therein). In each of these cases, the Seiberg-Witten

differential actually descends from integrating along the u-direction of the holomorphic two-

form of the elliptic K3:

ΩK3 =
dx

y
∧ du. (17.25)

Given all that we said previously, it is natural to expect a similar relation to hold for

more general choices of line bundles, and the associated monodromic structure. For example,

we can consider more general kinds of singular points in moduli space for the parameter

u. Indeed, there is a rich story involving the spectrum of particles which are becoming

massless, and the corresponding monodromy type. Examples of this sort include the rank

one superconformal field theories H0, H1, H2, D4, E6, E7 and E8. In the case where we keep

the flavor symmetry mass parameters switched off, these curves are given, for non-zero u by

(see e.g., [235] and references therein):

E8 : y
2 = x3 + u5 (17.26)

E7 : y
2 = x3 + u3x (17.27)

E6 : y
2 = x3 + u4 (17.28)

D4 : y
2 = x3 + αu2x+ u3 (17.29)

H2 : y
2 = x3 + u2 (17.30)

H1 : y
2 = x3 + ux (17.31)

H0 : y
2 = x3 + u. (17.32)

The monodromy type associated with each singularity at u = 0 is as follows:

EN : AN−1BC2 (for N = 6, 7, 8) (17.33)

D4 : A
4BC (17.34)

HN : AN+1C (for N = 0, 1, 2) (17.35)

69There is an unfortunate clash of notation between the central charge Zcentral and the notation for Zeta
function we have been using. To avoid confusion we have changed our notation for the Zeta function of the
arithmetic curve.
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where we have introduced the explicit elements of SL(2,Z):70

A =

[
1 −1
0 1

]
, B =

[
0 −1
1 2

]
, C =

[
2 −1
1 0

]
. (17.36)

Said differently, the physical intuition here is that the existence of a Hilbert space of

states in the p-adic setting would appear to require a specific monodromy group action as

well. It would be interesting to directly confirm this physical prediction.

We can also generalize this discussion to account for the presence of mass deformations.

Returning to the theories H0, H1, H2, D4, E6, E7, E8, these can all be presented as a defor-

mation of the original Weierstrass model:

y2 = x3 + f(u;m1, ...,mr)x+ g(u;m1, ...,mr), (17.37)

where the f(u;m1, ...,mr) and g(u;m1, ...,mr) are constructed from the Coulomb branch

parameter u, as well as Casimir invariants for each of the corresponding Lie algebras. Here,

r indicates the rank of the Lie algebra. Explicit expressions for the f ’s and g’s, including

the corresponding Seiberg-Witten differentials for the various cases can be found in various

places, including, e.g., reference [235] and references therein.

Finally, let us also mention that another fruitful way to construct examples of Seiberg-

Witten geometries is via the spectral cover construction of a Hitchin system on a genus g

curve with marked points, as explained in [239,240]. In that setting, the mapping class group

of the underlying curve provides us with the analog of the “duality group” action. We have

already mentioned that there are characteristic p versions of the Hitchin system available,

and analagous statements hold in the p-adic setting as well.

70Our conventions follow those given in reference [236]. For a physics centered introduction on these
structures, as well as additional connections to the literature (stated in a different convention), see references
[237,238].
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18 Holographic Structures

In this section we discuss the sense in which physics on the p-adics is intrinsically holographic.

Our discussion is reminiscent of that given in [11–13], but an important distinction is that

since our focus is on morphisms defined over the ring of Witt vectors for characteristic p

varieties, we do not directly deal with real valued physical fields. We can, however, ask

what happens in such situations, and we argue that there is a natural extension of our

considerations to that setting in section 19.

To begin, recall that in section 7 we discussed a sense in which scale entangelement in

characteristic p systems can be viewed as building up a bulk tree-like space. This becomes

especially sharp in the case of p-adic systems.

Indeed, one of the intriguing elements advocated in references [11–13] is that there is a

sense in which the p-adic numbers are intrinsically holographic. This can already be seen by

just examining the p-adic expansion of any element t ∈ Qp with p-adic norm |t|p = p−m

t = pm
∞∑
i=0

uip
i, (18.1)

with u0 ̸= 0, and where for technical reasons which will only be apparent later, we specify

the ui via Teichmüller representatives. The important feature for us is that we can speak of

the p-adics with unit norm as specifed by:

Up =
{
u ∈ Qp such that |u|p = 1

}
, (18.2)

and so we can also write for any t ∈ Qp, t = pmu for some m ∈ Z and some u ∈ Up. From

these considerations it follows that the entire set of non-zero p-adic numbers can be written

as a disjoint union of “shells”:

Q×p =
⊔
m

pmUp, (18.3)

in the obvious notation.

At the most basic level, this provides a hint of holography, because the norm of the

number serves as an overall scale. More precisely, we can think of the p possible coefficients

ti in the expansion:

t =
∑
i

tip
i, (18.4)

as specifying a node on a tree. This node is then attached to p possible nodes as associated

with the coefficient ui+1, and so on off to infinite values of the degree i. What we have just

described is the structure of the Bruhat-Tits tree:

Tp ≡ PGL2(Qp)/PGL2(Zp). (18.5)
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A more formal way to state this same structure is to consider the projective line P1(Qp) with

homogeneous coordinates [x, y]. It is well known that the projective line admits an action

by PGL2(Qp) just given by transformations of the form:[
x

y

]
7→
[
α β

γ δ

] [
x

y

]
=

[
αx+ β

γy + δ

]
. (18.6)

The space of two-dimensional lattices defined as Zp-modules also admits a natural PGL2(Qp)

action, and the Bruhat-Tits tree amounts to the space of equivalence classes PGL2(Qp)/PGL2(Zp).

A helpful reference is [241] (see also [40]), and for an account written for physicists see ref-

erences [12, 13].

There is clearly a sense in which this tree-like structure is building up a “bulk dual” to

the geometry specified by P1(Qp). In making appeals to the standard AdS/CFT correspon-

dence, one should of course tread carefully because all of this discussion is independent of

any particular dynamics (i.e., a choice of a particular CFT on the boundary). But, it is

nonetheless suggestive.

Continuing along this route, we see that for each t ∈ Qp, we can specify a path in the

tree Tp which begins at a particular node vt, and extends out to infinity, the “conformal

boundary” of Tp. Call this path γt. On the other hand, given a node v ∈ Tp, we also see

that it casts a shadow consisting of all points in Qp centered at a particular unit u0:

Shadow(v) =

{
t ∈ Qp such that t = pm

∞∑
i=0

uip
i and u0 specified by v

}
. (18.7)

The discussion extends to the projective line, so we have constructed two canonical maps:

point of P1(Qp)→ Bulk to Boundary Path in Tp (18.8)

point of Tp → Shadow(v), (18.9)

which is quite reminiscent of various holographic intuitions.

As explained in [12, 13], this discussion also extends to field extensions of Qp. Perhaps

the simplest case is where we work with the completely unramified extension Qq (which also

has a standard p-adic expansion). In this case, the Bruhat-Tits tree is given by:

Tq ≡ PGL2(Qq)/PGL2(Zq), (18.10)

and the uniformizer π = p, the only change being that now we have q+1 branches emanating

out from each node (one from the “past” and q towards the “future”). In reference [12,13] this

was interpreted as a “higher-dimensional” generalization because it involves a field extension

above Qp. From the perspective of the present note, it still exhibits much of the flavor of

a one-dimensional space, since the boundary space is just the projective line P1(Qq). See
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Figure 9: Depiction of the Bruhat-Tits tree for Qq = Qpn , a degree n totally unramified
extension of Qp. We can list elements of Qq in terms of a π-adic expansion where π is
the “uniformizer” of the field extension for Qq over Qp, and the coefficients are Teichmüller
representatives, namely each coefficient satisfies the equation ωq = ω. Note that in the case
q = p, we have π = p. We label each solution as ωj for j = 0, ..., q−1. Each coefficient is thus
listed by q different possibilities, and the resulting sequence of Teichmüller representatives
fills out a sequence in a tree where each vertex attaches to q + 1 vertices.

figure 9 for a depiction of the Bruhat-Tits tree of Qq.

We faced the same issue on specifying the “dimensionality” of our spacetime and target

space in the characteristic p setting, and in that sense it appears to be helpful in viewing

Qq, its algebraic closure Qq, and the metric completion of the algebraic closure Cq as fill-

ing in points as something which in the real setting we would view as “two-dimensional.”

Nomenclature aside, we can also see a natural generalization to higher-dimensional projec-

tive spaces, as dictated by Pn(Qq). In this case, we are really dealing with the more general

structure of a building, as specified by the quotient space PGLn+1(Qq)/PGLn+1(Zq). For

further discussion, see e.g., [242].

We can also extend this to more general field extensions L/Qp which may have local ram-

ification. In these cases, we still have a uniformizer π and a corresponding π-adic expansion,

but the precise structure of the tree in such cases can potentially be more involved. Even

so, we still have a Bruhat-Tits tree:

TL ≡ PGL2(L)/PGL2(OL), (18.11)

where OL denotes the ring of integers for L (i.e., those elements with norm less than or equal

to one).

We can extend these considerations even further by specifying a boundary field theory
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with rational morphisms

ϕ : X 99K Y, (18.12)

and then in each affine chart isomorphic to An we can set up a corresponding Bruhat-Tits

tree.

At this point, it is natural to ask whether we can build a theory in the bulk, and match the

profile of bulk modes to boundary correlators, as in the standard AdS/CFT correspondence

[243–245] (see e.g., [246,247] for reviews). On the boundary, we have already emphasized in

other contexts that we are interested in morphisms defined over finite fields and their lifts

to the ring of Witt vectors. To keep the discussion less abstract, we ask whether there is

any notion of a polynomial ϕ ∈ Qp[u] (i.e. the coordinate ring of A1(Qp)) or homogeneous

polynomials of fixed degree in Qp[u, v] (i.e., sections of bundles for P1(Qp)) which can be

lifted to a bulk field for Tp. To fix notation, we again write such a morphism ϕ : X 99K Y ,

in line with our previous discussions.

A fully local action principle in the bulk Tp is not obvious to us at the moment, but

we can at least point to something which is inherently more non-local.71 A natural answer

is that we should really seek a non-local structure in the bulk, as specified by the partially

ordered bulk to boundary paths in Tp, which we denote as PATH∞(Tp). The partial ordering

comes from the requirement that at each step of the path we pass to a term with smaller

p-adic norm in the Bruhat-Tits tree.

We can also introduce PATH(Tp) for the space of all partially ordered paths which may not

necessarily end on the boundary. Observe that for two such paths γ and γ′ in PATH∞(Tp),

we can interpret these paths as elements in the ring of Witt vectors for Fp. This is the main

advantage of using the Teichmüller representatives in the first place. That also means that

there is a notion of addition and multiplication for these paths, and so we can freely pass

between such paths, and their corresponding points on the boundary P1(Qp). So, almost

at a tautological level, any action we write for the boundary theory can be extended to an

action defined over PATH∞(Tp). Let us denote this extension of ϕ to such paths by Φ. In

the evaluation map, it clearly returns sensible answers for paths in PATH∞(Tp). This is not

fully satisfactory, if only because this does not provide a clear notion of quasi-locality in the

bulk.

A remedy is available, because we can consider neighboring paths in the tree Tp, say γ

and γ′ which differ only in that γ′ is obtained from γ by appending one additional node v.

We can then speak of another path γ − γ′ which has only one non-zero entry in the ring

of Witt vectors. Observe that it makes sense to speak of Φ(γ − γ′), since our evaluation of

such terms really stems from a definition given on the boundary P1(Qp). See figure 10 for a

depiction of one such difference of paths.

71We will return to this point after we discuss the connection between our approach and “standard” p-adic
physics.
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Figure 10: Depiction of two partially ordered paths γ (purple) and γ′ (purple and green)
in PATH∞(Tp) in which the partial ordering is dictated by motion towards the “conformal
boundary” indicated by the vertical blue line. Each path extends out to the conformal
boundary. The difference γ′− γ (green) is a partially ordered path which does not attach to
the boundary. Using such path differences one can construct a quasi-local bulk action from
finite differences of such partially ordered paths.

This sort of procedure allows us to specify an evaluation map of the form:

Φ : Tp 99K Y. (18.13)

In fact, we could in principle also define a discretized “lattice model” on Tp by just taking

finite differences of Φ at neighboring nodes in the tree. This sort of construction was used in

the context of p-adic AdS/CFT (with real valued functions) to propose a bulk action. On the

other hand, at many points in this note we have been at pains to point out the limitations

of lattice approximations, and have instead appealed to better behaved continuum concepts

such as local differentials of morphisms. From this standpoint, it seems much safer (and

perhaps conceptually cleaner) to simply view such a lattice action as an approximation for a

more non-local structure of the sort we have implicitly defined in terms of partially ordered

bulk to boundary paths. We will revisit this issue again in section 20, where we will consider

an analytification of p-adic varieties to Berkovich space. In Berkovich space, we again have

tree-like structures with derivatives constructed from finite differences on the tree. The

difference, however, is that the full space can be viewed as the inverse limit of a family of

trees [248], and for this reason, it allows us to bypass some of the standard difficulties with

lattice approximations to derivatives.
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18.1 Entangled p-adic Numbers

To draw out the parallels with standard holographic considerations, it is helpful to consider

the structure of entangled states and their associated scale dependence. Along these lines,

recall in section 5 that we introduced the notion of various Hilbert spaces as specified by

spatial morphisms Xs 99K Y . Clearly, these considerations carry over to the p-adic setting.

Moreover, because the “timelike” direction Xt comes with a built in p-adic norm, we see that

time-ordering now makes more sense (modulo the fact that we have the “radial” direction

of a p-adic number to contend with). We also saw in section 7 that a tree-like structure

naturally builds up a notion of entanglement across scales.

With this in mind, we now show how the small Hilbert space in the p-adic setting

Hsmall(Qp) is closely related to the big Hilbert space on the affine line Hbig(A1(Fp)), and

leads to a notion of “number entanglement” similar to the scale entanglement encountered

in the finite characteristic setting in section 7. The considerations we present clearly extend

to the totally unramified case, where we compare Hsmall(Qq) and Hbig(A1(Fq)). Further

generalizations are also available because the case of local ramification in the p-adic setting

just amounts in the characteristic p setting to dealing with function fields with ramified

extensions. For ease of exposition we focus on the simplest case which still illustrates all the

main points.

Consider, then, a p-adic number t ∈ Zp, the ring of integers. Observe that there is a

formal power series:

t =
∑
m≥0

ωmp
m, (18.14)

where here we use the Teichmüller representatives ωn. In the small Hilbert space, each such

point specifies a state for us, and we can write this instead as a sequence of Teichmüller

representatives:

|ω0, ..., ωi, ...⟩ =

∣∣∣∣∣t =∑
m

ωmp
m ∈ Zp

〉
(18.15)

We also have a p-dimensional qudit Hilbert space HTeich which is spanned by the possible

Teichmuller representatives |ω⟩. In this way, we again build up a tensor product structure for

Hsmall(Qp) which is reminiscent of the one already encountered in section 7 for Hbig(A1(Fp)).

We can first form a Hilbert space consisting of truncation to degreeM in the p-adic expansion:

Hsmall(Zp)
(M) ≃ H(m=0)

Teich ⊗ ...⊗H
(m=M)
Teich . (18.16)

Then, we can build up the entire small Hilbert space Hsmall(Zp) from the inverse limit:72

Hsmall(Zp) ≃ lim
←
Hsmall(Zp)

(M). (18.17)

72One can of course extend this to the small Hilbert space of Qp.
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Entanglement of states works in essentially the same way as already discussed in section 7.1.

As an example, the superposition of |0⟩ and |1 + p⟩ specifies a GHZ state:

|GHZ⟩ = 1√
2
|0, 0⟩+ 1√

2
|1, 1⟩, (18.18)

in the obvious notation. Continuing in this way, we obtain a notion of entanglement amongst

different numbers.

As another suggestive example, fix x a positive integer and define the state given by

summing over prime numbers ℓ not exceeding x (in the Archimedean norm):

|Π(x)⟩ = 1√
π(x)

∑
ℓ≤x

|ℓ⟩, (18.19)

where π(x) denotes the number of primes not exceeding x, and where for each |ℓ⟩ we introduce
the corresponding p-adic expansion with Teichmüller representatives. Observe that once the

value of |x|R (the Archimedean norm) becomes at least as large as the next prime after p,

the state |Π(x)⟩ is generically entangled. It would be quite interesting to directly compute

this entanglement entropy, and it is likely closely tied to the distribution of primes. Indeed,

it is a classic result (the prime number theorem) that the asymptotic distribution of primes

satisfies [249,250]:

lim
x→∞

π(x)× (−x−1logx−1) = 1, (18.20)

where we have suggestively written the second factor as an entropy function.
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19 “Standard” p-adic Physics

At this point we would be remiss if we did not mention there has been much recent work on

understanding potential physical interpretations for working over the p-adics. The goals of

the present approach appear to be somewhat distinct from what has been pursued elsewhere,

but our aim will be to establish some basic connections with these complementary (and

substantially older as well as more thoroughly investigated) proposals.

Doing so will allow us to make contact with the more “standard” literature on p-adic

physics (see e.g., [33–41] for earlier work, as well as references [11–13,42–64] for more recent

work which also includes new applications to holography).

The approach we have advocated so far is somewhat distinct from the “standard” treat-

ment of physical systems defined over p-adic numbers. A very common starting point is to

consider a bosonic field, as specified by a map from Qp to R, namely:

ϕR : Qp → R. (19.1)

The subscript R serves to remind us that these are real valued functions as opposed to

the algebro-geometric morphisms we have been considering up to this point. Real valued

functions are somewhat more awkward to handle from our current perspective but it is of

course important to see whether we can make contact with the existing literature, and in

what way.

In our case, the big Hilbert space of states we have constructed consists of morphisms

|ϕ : X 99K Y ⟩. In particular, since our path integral still involves sums over characters taking

values in C×, we also know that all overlaps of states also take values in the complex numbers.

In particular, we can speak of a wave functional Ψ[ϕ(xs)] which depends on the spatial profile

of a field. This wave functional again takes values in the complex numbers.

Now, in the context of quantum field theory, we are accustomed to viewing the quantum

field as a convenient device for describing multi-particle excitations at different locations in

spacetime. From this physical perspective, the existence of the wave functional Ψ[ϕ(xs)]

means that we should expect a set of real valued physical fields which capture the same

dynamics.

How to construct this basis of fields in practice? To illustrate, we consider again the

simplest situation with morphisms from A1(Qp) → A1(Qp), as specified by polynomials

ϕ ∈ Qp[x]. We can build a p-adic valued function by using the evaluation map for this

polynomial, and by abuse of notation we write these values as ϕ(t) for t ∈ Qp. We can

produce a C× valued function using the character map:

O(t) = exp(2πi{ϕ(t)}). (19.2)

Taking a logarithm, one can also construct a real valued function which is well-defined up
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to branch cuts:

ϕR(t) ≡
1

2πi
logO(t) = 1

2πi
log exp(2πi{ϕ(t)}), (19.3)

i.e., we have converted the evaluation of a p-adic morphism to a real valued function.

In the context of “standard” p-adic physics, one can also construct a notion of an action,

including kinetic terms and potential energy terms. The case of a potential energy density

involves further composition with real valued functions with p-adic support, and a natural

subclass of possibilities involves just having further polynomials in real valued fields:

f : Qp → R. (19.4)

The case of kinetic terms requires us to specify some notion of a derivative. From a phys-

ical perspective, the main thing we wish to retain is a notion of a momentum eigenstate.

More precisely, we seek differential operators D(m) which compose via D(m)D(n) = D(m+n)

and which act on characters χk(t) = exp(2πi{kt}) as D(m)χk(t) = |k|mp χk(t), i.e., the char-

acters are the p-adic generalization of a plane wave. This can be accomplished using the

Vladimirov derivative [36, 38, 37]. A helpful discussion of the Vladimirov derivative is given

in Appendix B of reference [13]. Here, we focus on the main elements of these results. For

a general real valued function, we have:

D(m)f(t) ≡ 1

Γp(−m)

∫
Qp

dt′
f(t′)− f(t)
|t′ − t|m+1

p

, (19.5)

where we have introduced the standard Haar measure for Qp such that Zp has unit volume.

Here, we have also introduced the p-adic Gamma function:

Γp(α) =

∫
Qp

dt χ(t) |t|α−1p =
1− pα−1

1− p−α
, (19.6)

where χ(t) = exp(2πi{t}). We shall sometimes use the notation D = D(1) to indicate the

special case of a single Vladimirov derivative.

To see that this definition accomplishes the main task, we follow reference [13], and act

on a character χk(t). Doing so, we have:

D(m)χk(t) =
1

Γp(−m)

∫
Qp

dt′
χk(t

′)− χk(t)

|t′ − t|m+1
p

=
χk(t)

Γp(−m)

∫
Qp

dt′
χk(t

′ − t)− 1

|t′ − t|m+1
p

. (19.7)

We can consider the change of coordinates k(t′ − t) = x′. Then, we get:

D(m)χk(t) = |k|mp
χk(t)

Γp(−m)

∫
Qp

dx′
exp(2πi{x′})− 1

|x′|m+1
p

. (19.8)
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Evaluation of this integral is somewhat subtle because the denominator and numerator

both vanish as |x′| → 0. In references [251, 252] this integral is evaluated. Following

reference [251], we can break up the integral as a sum over shells of fixed norm Sm =

{t ∈ Qp such that |t| = pm}. Evaluation of the integral can then be achieved using the value

of the integral of a character over the ball Bm = {t ∈ Qp such that |t| ≤ pm}:∫
Bm

dx χ (kx) =

{
pm if |k|p ≤ p−m

0 otherwise
. (19.9)

The end result is that one now finds:

D(m)χk(t) = |k|mp χk(t), (19.10)

as claimed. In principle, then, we can consider a mode expansion of a real valued function

f and decompose into Fourier modes such as:

f̃(k) =

∫
Qp

dx χk(x)f(x). (19.11)

For example, we can form a kinetic term using by acting via:∫
Qp

dx D(m)f(x)D(n)f(x) =

∫
Qp

dk |k|m+n
p f̃(k)f̃(−k). (19.12)

From our present perspective where we treat the affine line A1(Qp) as a one-dimensional

space, the seemingly natural choice is to take a kinetic term with m+ n = 2. On the other

hand, in the p-adic string theory literature where Qp is interpreted as the worldsheet of an

open string, it is also natural to consider m+ n = 1. The reason for this choice is that if we

Fourier transform back to position space, then the Green’s function is:

⟨f(x)f(y)⟩ ∼ − log |x− y|p , (19.13)

in accord with what one expects for the Archimedean string [253]. That being said, we also

note that for a quadratic extension of Qp, there is a sense in which we have a two-dimensional

space and then producing a logarithmic Green’s function would requirem+n = 2, so it seems

reasonable to retain our main thread where we specify a kinetic term by a two derivative,

two field term.73

It is also interesting to consider the action of the Vladimirov derivative on the operators

73There is some debate in the p-adic string theory literature as to the proper way to formulate closed
p-adic strings. We also note that even in the open string case, the driving aim appears to be to give a p-adic
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indicated in equation (19.2):

D(m)O(t) = 1

Γp(−m)

∫
Qp

dt′
O(t′)−O(t)
|t′ − t|m+1

p

(19.15)

= O(t) 1

Γp(−m)

∫
Qp

dt′
exp(2πi{ϕ(t′ + t)− ϕ(t)})− 1

|t′ − t|m+1
p

. (19.16)

Insofar as the lattice derivative provides an approximation in the small t′ approximation, we

can write:

ϕ(t′ + t)− ϕ(t) = t′∂ϕ(t) + ... (19.17)

as an adequate approximation. So, in other words, we get to leading order:

D(m)O(t) = O(t) |∂ϕ(t)|mp + .... (19.18)

For further discussion on related manipulations, see for example reference [255].

Constructing a kinetic term of the sort we have already proposed now follows from also

including O†(t) = exp(−2πi{ϕ(t)}) so that in particular we have:

DO†(t)DO(t) = |∂ϕ(t)|2p + ... (19.19)

So, at least formally, we can pass between the algebro-geometric setup defined in terms of

Jacobi sums of characters and the standard construction of p-adic actions.

Similar considerations hold in the construction of a “bulk action” defined on the Bruhat-

Tits tree. In reference [12], the graph defined by the Bruhat-Tits tree Tp was used to specify

a lattice model, with each vertex (i.e., node of the graph) of the group associated with a real

number φ : Vert(Tp) → R. Then, a lattice kinetic term can be achieved by taking nearest

neighbor differences, via: ∑
⟨vw⟩

(φv − φw)
2 , (19.20)

version of the Veneziano amplitude (see [254] for the Archimedean case), through expressions such as:

B(α, β) ≡
∫
Qp

dx|x|α−1p |1− x|β−1p . (19.14)

To get this sort of structure to appear from “worldsheet” correlators, one can adopt the single derivative
action (so that a logarithm is produced). A related comment is to recall the notion of p-adic time ordering
we developed earlier where we view Qp as specified by elements with a fixed norm, as well as a choice of unit.
In that sense, working with Qp could be viewed as “two-dimensional” while Qp ×Qp might then be viewed
as “four-dimensional”. We can in some sense bypass these issues if we adhere to the notion of dimensionality
already advocated in our development of physics over finite fields. From this perspective, one ought not to
be biased by intuition derived solely from working over the real numbers. We present a related proposal for
formulating non-Archimedean strings in section 20.
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where ⟨vw⟩ denotes nearest neighboring vertices v and w in Tp. Recall that in our discussion

of morphisms supported on paths in the Bruhat-Tits tree that we also encountered p-adic

valued functions with support in PATH∞(Tp), which we then extended to functions valued

on the vertices of the graph. Using the character map, we can now take, for Φ ∈ PATH∞(Tp),

the character exp(2πi {Φ}), and from this, construct a corresponding finite difference. So in

this sense, we expect to make contact with the holographic discussions in references [12,13].

From this point on, we can essentially borrow much of the discussion from the existing

literature, but with the provisos that sometimes the notion of spacetime dimension we have

discussed earlier is distinct from how it is used in the p-adic physics literature. It would

clearly be interesting to further develop these similarities and differences, especially as it

pertains to formulating a more general notion of p-adic strings.

With this in mind, let us comment on a few “obvious points” which emphasize more the

use of the p-adics. Observe, for example, that we can specify Calabi-Yau spaces over C by

the condition that the canonical bundle is trivial. This of course also makes sense over Cp,

so one might ask whether there is a more direct relation between these two geometries. For

example, in the case of a complete intersection Calabi-Yau, we can consider specializing the

coefficients of the hypersurface equations to have integer coefficients. In this case, we can

directly formulate the geometry over either C or Cp.

In fact, if we restrict ourselves to algebro-geometric structures, even more is possible.

This is because there is a non-canonical isomorphism between C and Cp, and as such, we

can freely interchange the ground field, which we can loosely write as a relation such as

X(C) ≃ X(Cp).
74

From this perspective, the notion of “proximity” really depends on more refined structures

such as the metric. It also means, however, that as far as studying standard questions such

as intersection theory of divisors or other numerical invariants (as often appear in the physics

literature), we are free to use either ground field.

Another comment is that in passing from p-adic spaces to real (or complex spaces), we

can make use of the characters of the p-adics. Let us note here that in the context of for

example, the Hitchin system, it is natural to work in terms of the corresponding character

variety for the moduli space of solutions.

74The relation between the two can be seen as follows (see e.g., reference [161]). Our discussion follows [256]
(see also [257]). First, we introduce transcendence bases for C and Cp, which we write as T and T ′. By

definition, this means C ≃ Q(T ) and that Cp ≃ Q(T ′). Note, however, that as sets, C and Cp have the same
cardinality, and therefore so do T and T ′. Consequently, using the axiom of choice we can conclude that
there is a non-canonical isomorphism Q(T ) ≃ Q(T ′). Taking the algebraic closures yields C ≃ Cp. Note
that this also means that for distinct primes p and p′ we also have C ≃ Cp ≃ Cp′ . From a number-theoretic
perspective this is clearly awkward, but at least formally, nothing stops us from carrying out this sort of
correspondence.
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20 Analytification

In the previous section we saw the emergence of p-adic geometry, at least in the limit where

we take N = pa with a large. Now, as we approach this limit, we can ask whether we

expect to recover physics over a p-adic variety, or perhaps some other space. Indeed, in

comparing with what happens with physics over the real numbers, we can see a number of

important differences. For one, the topology of Qp is not path connected, and the space of

real valued continuous functions includes locally constant functions. These can perhaps be

viewed as important distinctions compared with the setting of physics over the reals, but

if our goal is to eventually recover standard physical constructs, we should also aim to see

how more refined topological structures can also emerge from this setting. Indeed, one of

the main virtues of working with an analytic continuation of real quantities is that one can

then in principle leverage structures from complex analysis. Historically this has been an

important theme in the development of physical theories, so it would seem worthwhile to

further develop it in this setting as well.

Another related issue is that while it is of course appealing75 to formulate our path

integral in terms of discrete sums over characters, one can of course ask whether there is a

sensible notion of convergence. A common strategy in the physical setting is to consider the

analytic continuation to Euclidean signature, since partition sums in statistical mechanics

often have better behaved convergence properties. We have already remarked that there is

a formal way to accomplish this even in characteristic p, but it still relies on the formulation

in terms of characters for a complete formulation. Provided we can set up a suitable notion

of analysis over a p-adic variety, we can hope that both these topological and analytic issues

can be dealt with simultaneously.

Our aim in this section will be to address these issues.

Now, at first glance, the “standard” approaches to p-adic physics do not appear to possess

such structures. For example, one proposal in the p-adic string theory literature is to treat the

genus zero worldsheet for open strings as Qp, and a suitable quadratic extension of Qp as the

closed string worldsheet. While the intuition for doing this is that a quadratic extension of

R is just the complex numbers, it seems fair to say that some of the most important features

of complex analysis typically used in the study of standard perturbative string theory are

wholly absent from such p-adic analogs. To keep the discussion somewhat closer, one might

instead consider the algebraic closure of Qp, denoted as Qp. We note that our discussion of

physics in characteristic p naturally makes contact with this field, as obtained from the ring

of Witt vectors associated with the algebraic closure Fp. Now, it turns out that Qp is not

metrically complete, but there is a standard metric completion which is also algebraically

closed, and it is denoted by Cp. More generally, for a local field k we refer to Ck as the

metric completion of its algebraic closure.76 At first glance, then, Cp would appear to be a

75At least in our opinion.
76A comment on notation: In early sections we reservedK for the ground field and L for various extensions.
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natural candidate for carrying out a more direct link with standard structures appearing in

real physics.

But as is well known, even this space has a rather coarse topology. To name just one

issue, Cp is not path connected. Moreover, when working over Cp, there is apparently no

natural notion of analysis in the same spirit as what would occur over the standard complex

numbers C. All of these issues make more refined discussions of physics difficult to achieve.

In this section we argue that some of this additional structure is already present in the

way that we have been setting up our general framework for path integrals over finite fields.

What we shall argue is that in the large a limit, the Hilbert space of states constructed from

morphisms between varieties can be supplemented by additional points which “fill in” the

topology of the p-adic variety. This procedure is, in the mathematics literature, known as

“analytification”. Starting from a variety X defined over a non-Archimedean field K which

is metrically complete and algebraically closed, there is a corresponding p-adic analytic space

Xan. We will mainly focus on the simplest case where this procedure produces physically

compelling structures, and this is known as the Berkovich space associated to X. One of our

aims will be to see how far we can get in recasting our previous considerations in terms of

physics defined on Berkovich space. The important point for us is that once this analytifica-

tion procedure is completed, we get a refined topology on which many manipulations similar

to complex analysis can be carried out, but now in the non-Archimedean setting. This in

turn allows us to bypass some of the more awkward features of p-adic physics, as well as

allowing us to make far closer contact with how we expect physics over the real numbers

to eventually emerge. For a depiction of the tree-like structure of Berkovich space, see the

depiction provided in figure 11.

The rest of this section is organized as follows. We begin by briefly reviewing some

aspects of Tate algebras and their use in defining a rigid analytic space. In particular, we

explain how our path integrals are already sensitive to such structures. At some level, this

equips a p-adic variety with a refined Grothendieck topology. This still produces a rather

coarse topology. We then explain how a further analytification is possible, as in the work of

Berkovich. This further procedure also emerges naturally in our setting by considering the

physical implications of defining local observables in our setting.

20.1 Topological Refinements

In this section we argue that our path integral formalism naturally motivates working over a

rigid analytic space, and its further refinement to a Berkovich space. This is not the place to

give a full account of these notions, but we would at least like to sketch how they naturally

appear from the considerations we have already set in motion.

We did this in part to avoid confusion with the standard use of k as a momentum variable in the physical
setting. Since we will need to discuss various field extensions in the analytic setting, in this section we will
aim to be more flexible in our notation choices.
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Figure 11: Depiction of the Berkovich projective line reproduced from figure 2 of refer-
ence [258]. See also references to Yggdrasil in The Poetic Edda, Völuspá, stanzas 19, 47;
Gŕımnismál, stanzas 35, 44; and Fjölsvinnsmál, stanzas 19, 20.

To set the stage, we first consider the original structure of rigid analytic geometry pro-

posed by Tate [31], and its algebro-geometric characterization given by Raynaud [259]. A

helpful account is given in reference [260]. We begin by considering a local non-Archimedean

field k with K = k̂ the metric completion of the algebraic closure. We denote the n-

dimensional unit ball inside kn by:

Bn = {(t1, ..., tn) ∈ kn such that max |ti| ≤ 1} . (20.1)

The main idea is to consider next power series in k[[T1, ..., Tn]] with suitable convergence

properties on Bn. Writing an element f ∈ k[[T1, ..., Tn]] as:77

f =
∑
νi≥0

aν1...νnT
ν1
1 ...T

νn
n , (20.2)

the condition that f converges on Bn occurs if and only if |aν1...νn| → 0 as ν1 + ...+ νn →∞.

Observe that the collection of such convergent power series forms an algebra (actually what

is known as an affinoid algebra) and we refer to this as T n. Observe that the norm on k

extends to one on T n because for any f ∈ T n we can write the Gauss norm for this power

series as:

|f | = max |aν1...νn| . (20.3)

This makes sense because convergence of f on Bn means that there is indeed a maximal

coefficient. The appearance of these sorts of power series can be viewed as a limiting opera-

77We have switched to the standard polynomial variables which appear in the literature.
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tion as we proceed to the p-adic limit of our path integrals over finite fields. An additional

comment is that physically, we often specify local operators in terms of their behavior on a

region of the spacetime. This is precisely what we get when we focus on convergent power

series on the n-ball Bn.

We can already see some hints that notions from complex analysis have analogs in this

setting, since for example we have a maximum modulus principle:

|f | = max
t∈Bn
|f(t1, ..., tn)| , (20.4)

in the obvious notation. Of course, the “nicest situation” is where we work directly with

respect to k = K so that no further field extensions need to be considered, but we can

proceed more generally, at least for now.

At this point we can proceed as we would normally in algebraic geometry, and construct

the points of the polydisk as specified by maximal ideals in T n. From this starting point,

we can consider ideals I and quotients T n/I. These produce k-Banach algebras, and are

referred to as affinoids. These can be viewed as specifying subsets inside the polydisk, and

so we can construct a corresponding Grothendieck topology from the corresponding notion

of a covering space. Said differently, just from asking for convergent power series, we obtain

a first notion of a rigid analytic geometry. At this point, the operations of gluing can be

used to build more general notions of gluing spaces, and so we see that a variety X over k

can be functorially related to its analytification Xan.

There are, however, still some unsatisfactory elements in this construction, because

Grothendieck topologies are still somewhat coarse. Physically what we would really like

to see is a clear notion of how to connect paths between distinct points in our topology, i.e.,

we would like to see connected paths such as γ : [0, 1]→ X, where [0, 1] denotes the standard

unit length interval in R. The reason we expect this to be possible is due to the fact that

we want to have a notion of time ordering which makes sense in the infinitesimal setting.

As we have already explained, there is a sense in which we can fix this issue “by hand” in

the context of finite fields, and even p-adic spaces by just imposing a notion of discrete time

step. At a technical level, having such path connectedness is also desirable because it gets

us much closer to standard physical intuition which has been developed based on methods

from complex analysis.

Quite remarkably, it turns out that there is a canonical way to add these additional points

which include the construction of Berkovich [32,261], as well as Huber’s more general notion

of adic spaces [262]. Again, giving a full acount of these notions would be a rather long

digression, but we can at least give a condensed account in Appendix U. For our purposes,

the main point is that there is a suitable analytification of a p-adic variety which provides

us with a notion of a path connected space.

Rather than continue on in the most abstract setting, let us now specialize to the one-

dimensional case given by the projective line P1
Berk, as well the related spaces specified by the
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affine line A1
Berk and the “upper half space” HBerk = P1

Berk\P1(K). The main thing we want

to emphasize here is that these spaces are path connected, and moreover, can be equipped

with a suitable topology which is metrizable, as well as more standard notions from analysis

such as a Radon integral and Laplacian. Of particular significance for us is that there is

also a well-defined potential theory available on Berkovich spaces, and this makes it possible

to give a more satisfactory account of correlation functions in this limit. Then, we can of

course consider the suitable truncation of these notions to various p-adic and even finite

characteristic spaces.78

Along these lines, we note from reference [263] that for x, y ∈ A1
Berk, we have a canonical

notion of distance between x and y relative to infinity denoted by δ(x, y)∞. This can be

specified using a formal operation on the tree-like structure associated with the Berkovich

projective line, or perhaps more concretely as the limit:

δ(x, y)∞ = lim sup
(x0,y0)→(x,y)

|x0 − y0| , (20.5)

where x0, y0 ∈ K and we use the product topology on A1
Berk × A1

Berk to define the lim sup

operation. In the literature, this is sometimes written as [x, y]∞ and is known as the Hsia

kernel.

There is also a notion of a Laplacian for real valued functions f : A1
Berk → R, as well as

a standard notion of Green’s function given by:

G(x, y) ≡ − log δ(x, y)∞. (20.6)

Owing to the tree-like structure of the space P1
Berk, this can be evaluated using a nearest

neighbor differences formula on the associated graph, but we emphasize that this Laplacian

retains more of the desirable analytic features one would want from such a differential op-

erator compared with a crude lattice approximation (as would be specified over the reals).

In particular, this Laplacian ∆P1
Berk

has the important property that acting on the Green’s

function yields:

∆P1
Berk

G(x, y) = δy − δ∞, (20.7)

where in the above, we imagine taking derivatives with respect to the first argument x.

Additionally, δy and δ∞ denote Dirac delta functions in the sense that they are concentrated

78Indeed, there is a version of these notes in which one could have attempted to entirely reverse the order
of the various parts and sections, starting from a formulation over Berkovich spaces fibered over SpecZ and
then proceeded to various coarse graining operations, namely, first restricting to a single prime of SpecZ,
then proceeding to Cp, then to some finite extension of Qp and finally to a suitable residue field such as Fq

or Fp. Our own view is that this would likely have led to an (even more) jarring account, but it would likely
be instructive. We leave this as an exercise to the interested reader.
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around the points y and ∞, and integrate to one, i.e.:∫
A1
Berk

dx δy = 1. (20.8)

In fact, even more is available to us. As found in [264], the analytification of a variety

over a local field K can be equipped with a very close analog of the standard (p, q) differen-

tial forms which appear prominently in the study of complex analytic varieties!79 The main

construction involves notions from tropical geometry, and treating Berkovich’s construction

as a suitable inverse limit on the associated tropicalizations, so we simply refer the interested

reader to the original papers for additional details. Instead, we focus on some of the close

parallels available to us in this setting. The main elements are remarkably close to what

one typical expects in standard complex analytic treatments involving Dolbeault cohomol-

ogy. As reviewed in [265], some elements directly carry over from the complex case with a

suitable notion of differential form, as specified by Lagerberg’s notion of “supercurrents and

superdifferentials” (no relation with supersymmetry) given in reference [266].

Let us first briefly recall how superforms work for real varieties, and then we discuss how

this extends to p-adic analytic spaces [266]. Our discussion follows the helpful treatment

presented in [264] (see also [267]). To begin, we note that for any real manifold, we can

introduce a notion of a local (p, q)-differential by forming the tensor product:

Ap,q (U) ≡ C∞(U)⊗
p∧
V ∗ ⊗

q∧
V ∗, (20.9)

where V denotes a vector space over the reals. Locally, we can then write a (p, q) form as:

ω =
∑

|I|=p, |J |=q

ωIJ dxI ⊗ dxJ , (20.10)

in the obvious notation. Said differently, one simply takes two copies of the de Rham complex

and forms a bi-grading from these two complexes.

Quite remarkably, these notions can also be extended to p-adic analytic spaces using

some methods from tropical geometry. We briefly review some of this in Appendix V. The

upshot is that there is a notion of (p, q) real differential forms on Xan which we denote as

Ap,q. The essential point is that the tropicalization map for affine n-space:

Trop: An → Rn (20.11)

(z1, ..., zn) 7→ (− log |z1| , ...,− log |zn|). (20.12)

So, building the suitable bigraded differentials on the image of the tropicalization, there is a

79Here, p does not refer to a prime number, but just the degree of a differential form. The clash of notation
is unfortunate, but hopefully the context will be clear. Similar comments hold for q.
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natural pullback of this from the real setting to the p-adic analytic setting. In other words,

we can also speak of (p, q)-forms in the p-adic analytic setting.80 For a helpful overview to

this, as well as related topics, see e.g., [268].

To illustrate the similarities with the complex case, let us briefly recall that for a complex

analytic variety Z, we often make use of Dolbeault differential operators ∂ and ∂ with

d = ∂ + ∂, and we can summarize all of this in terms of a triple (Z, ∂, ∂). In particular,

we can label differential forms according to their (p, q) type with respect to holomorphic

and anti-holomorphic indices, i.e., we can write complex valued differential forms Ak via the

decomposition:81

Ak =
⊕

p+q=k

Ap,q. (20.13)

Moreover, there is a natural link between the cohomology of the complex (Ap,•, ∂) and

Hq(Z,Ωp).

Turning next to the case of Xan the analytification of a variety defined over K, a remark-

able result of [264] is that there is a quite similar notion of differential operators d′ and d′′

such that d = d′ + d′′, and moreover, that there is an analogous triple (Xan, d
′, d′′) with a

grading of analytic differential forms Ap,q
an such that:

d′ : A(p,q)
an → A(p+1,q)

an (20.14)

d′′ : A(p,q)
an → A(p,q+1)

an . (20.15)

In fact, even more is available, and there is even an analog of the Poincaré-Lelong formula,

namely for a divisor D specified by f a meromorphic function such that divf = D, we have:

d′d′′ log |f | = δdiv f . (20.16)

This means, in particular, that we can decompose our Laplacian into a composition by d′

and d′′, much as we would do in the “ordinary” complex setting. There are, of course, some

distinctions which show up, since in the p-adic setting the space of locally constant functions

is somewhat richer than in the standard complex setting, but other than this, we find it

promising that so much of the structure which appears in the study of complex differential

geometric objects can be transported over.

This in turn provides a fresh perspective on some of the more conjectural aspects of our

discussion of physics in characteristic p presented earlier. While we there aimed to build

up various physical structures directly, we can now see that once embedded in the bigger

structure of Berkovich spaces, there is a certain “inevitability” (albeit still quite conjectural)

80The reason we need to work with an analytification rather than just a variety over Qp or Cp is that
we need to have a refined enough topology to properly construct suitable pullbacks. If the topology is too
coarse, this can fail.

81We are running out of sensible letter choices in the Latin alphabet. The meaning of the notation for the
various superscripts k, p, q should be obvious.
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to some of these claims.

With this in place, let us now turn to the construction of some physical systems which

exhibit some of this additional structure.

20.2 Building Actions

Compared with the situation appearing in “standard” p-adic physics, we see that formulating

an action principle in this setting is now rather straightforward. Moreover, this discussion

is naturally geared towards what in the real setting we would have referred to as the “Eu-

clidean signature”formulation. Rather than present a complete treatment, we will let the

presentation of examples serve the same purpose.

As a first example, consider the theory of a free scalar field ϕ : A1
Berk → R. This can be

specified by the action:

Sfree[ϕ] =

∫
P1
Berk

dx
(
−ϕ∆P1

Berk
ϕ
)
. (20.17)

On a curve Σ we can also write this using our differential operators d′ and d′′ on Berkovich

space as:

Sfree[ϕ] =

∫
Σ

− ϕd′d′′ϕ. (20.18)

Let us also remark that at this point, we can, by the physicists’ standard abuse of

notions of limits, set up a path integral formalism, integrating over the space of all such

maps. Then, we can evaluate real valued correlators much as we would in a standard 2D

field theory defined over the complex projective line:

⟨O1(x1)...On(xn)⟩ =
∫
[dϕ] exp(−S[ϕ])O1(x1)...On(xn)∫

[dϕ] exp(−S[ϕ])
, (20.19)

where of course we can now entertain more general choices for our action.

Note also that since we have a satisfactory notion of Green’s functions available, we can

expect to use an analog of the method of images to set up similar actions for the affine line

A1
Berk as well as the half space HBerk. Additionally, since we can proceed patch by patch,

similar notions clearly extend to general genus g curves initially formulated over Cp and its

analytification.

There are also important differences from the case of working over the complex numbers.

For example, if we consider a disk in C, then the boundary is always an S1. In the Berkovich

setting, however, this boundary is often a finite number of points, owing to the tree-like

structure of Berkovich space (see e.g., [263] for some helpful examples).

We can also formulate an action principle for single derivative fields, including fermionic

degrees of freedom. Indeed, since we have the differential operators d′ and d′′, the construc-
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tion of a suitable Dirac operator is readily available. To keep the discussion concrete, let us

again focus on the one-dimensional case, with Σ a curve. Then, we can form close analogs

of the standard bc and βγ systems of 2D CFTs / string theory. Along these lines, suppose

we have b and c given as meromorphic sections of the line bundles K1/2
Σ ⊗ L and K1/2

Σ ⊗ L∨
with L a line bundle, and we have made a choice on the spin structure. Then, we get a

well-defined action:

Sbc =

∫
Σ

bd′′c, (20.20)

The usual case of the bc system corresponds to setting L = K3/2
Σ , while a standard fermion is

obtained by setting L = OΣ. The point here is that nowhere do we need to actually demand

that we are working over a complex curve. Indeed, everything goes through as expected

when Σ is a Berkovich space. We can clearly provide a similar setup for the βγ system, as

well as more general actions constructed via our differential operators.

This is all by design and points to the general feature we want to emphasize. There is

little distinction at this point between how a physicist typically algebraically manipulates

various correlation functions, be it over the complex numbers or the analytification provided

by a Berkovich space.

Continuing with our theme of one-dimensional systems (i.e., two “real” dimensions),

we also see that we can also introduce a standard notion of a stress energy tensor, much

as we would in an ordinary 2D CFT.82 To illustrate, consider again the real valued scalar

ϕ : Σ→ R. Observe that we can construct a (1, 0)-form d′ϕ. So, on the symmetric product

A(1,0) ⊗A(1,0), we can build a corresponding “holomorphic” stress tensor:

T = d′ϕ⊗ d′ϕ, (20.21)

and we can, in turn, also compute operator correlation functions using the fact that we have

the usual logarithmic dependence for the two-point function of free scalars. In particular,

this allows us to specify a precise notion of a stress energy central charge cT , just as we would

in ordinary conformal field theory. Similar considerations hold for the bc and βγ systems

introduced on Berkovich space.

Another comment is that precisely because we have operators d′ and d′′, we see that

we can also formulate supersymmetric versions of our theory. Indeed, because the usual

verification that a Lagrangian is invariant under supersymmetry just involves a sequence

of algebraic manipulations, there is again, a functorial sense in which the construction of a

supersymmetric theory is automatic. We summarize this by the formal relation between real

/ complex valued actions and their formal counterparts obtained from analytification:

SC ↔ SXan . (20.22)

82The absence of a stress energy tensor has historically been a major issue in the study of the p-adic string
(we thank A. Huang and B. Stoica for emphasizing this point to us). Here, it appears more naturally.
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In a certain sense, we already anticipated that this ought to be possible in our construction

of characteristic p supersymmetric actions, but in that setting, our emphasis was on target

spaces which were also characteristic p varieties. Of course, from our discussion of p-adic

field theories in section 16, we have seen that we can go back and forth between the two

settings via suitable character maps. At the algebro-geometric level, this is actually not that

surprising since there is a formal isomorphism between C and Cp, which equally well applies

to any two fields with transcendental elements. Convergence properties of the path integrals

is of course, not guaranteed to work under such a map, but at the level of morphisms between

varieties, we see that our discussion allows us to go back and forth.

20.3 Brief Aside on Holography

We previously mentioned that the structure of the p-adics has a rather holographic flavor,

something which has been explored in great detail in [11–13], as well as in its potential

relations to tensor network models [8–10]. One issue with some of these developments is

that while suggestive of a bulk / boundary correspondence, some dictionary entries from

the standard AdS/CFT correspondence are not so apparent. In particular, the identification

of a “bulk graviton” is challenging to construct in this setting and this in turn makes its

role in the study of quantum gravity less immediate. Now, in the standard AdS/CFT

correspondence, one considers the dual of the graviton is just the stress energy tensor. Since

we have now constructed a p-adic analog of the stress energy tensor (via our superdifferential

construction), we can simply start tracking the p-adic expansion of this boundary operator,

which in turn tells us the bulk profile for the graviton. Similar considerations clearly hold

for higher-dimensional varieties. For example, we can take the product of K-analytic curves

and performing the corresponding p-adic expansion. Note also that the p-adic expansion

always introduces a single “extra dimension” which again mimics the structure present in

Archimedean holography. So, aside from providing us with a way to set up a stress tensor

for string worldsheet CFTs, we can apply the same construction more broadly.

20.4 Closed Berkovich Strings

At this point it becomes irresistible to at the very least attempt a formulation of p-adic string

theory, but where now the worldsheet is specified on the corresponding Berkovich space rather

than directly on a p-adic variety. Doing so, we get to leverage all of the additional structure

present in the analytification of our variety.

Before getting to this, let us mention that setting things up in this way allows us to

address a somewhat awkward feature of the “standard” accounts of open and closed p-adic

string theory, where typically Qp or some quadratic extension are considered. This notion of

“dimensionality” seems to sacrifice too much of the analytic structure present in the standard

physical string, so we can at least hope that the present effort can help us in this regard.
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For one thing, we observe that there is a relatively clear notion of what we could mean by

evaluating a string amplitude in this setting: One first specifies the usual vertex operators

for scalars such as ϕ, evaluates a suitable vertex operator correlation function, and then

proceeds to integrate over any worldsheet moduli which cannot be fixed by global conformal

killing vectors. All of these notions make sense in the context of Berkovich spaces so it is

clear that many notions carry over in a functorial sense. To make complete sense of string

theory in this setting would require us to specify a notion of a moduli space of metrics on

the Berkovich space, but again, this is something that has at least been considered in some

detail in the case of curves (see e.g., [269] and references therein). Indeed, we expect that

the moduli space of complex structures of a curve is also a Berkovich space.

The usual notions of string theory also require the appearance of worldsheet fermions, but

again, we saw how to implement this in our discussion of the bc and βγ systems. This also

makes it clear that the usual cancelling of the conformal anomaly (i.e., the Weyl anomaly)

generated by the bc system and the βγ system (in the supersymmetric case) directly trans-

ports over to the case of Berkovich space. Additionally, this means that for the standard

bosonic string, the critical dimension is just 26, and for the superstring (i.e., the case with

worldsheet supersymmetry) we again get ten dimensions. Again, none of this is too different

from standard string theory.

Observe also that we have available a genus expansion. In the present setting, this follows

from the fact that because we have well defined notion of differentials and sheaf cohomology

on Berkovich space, as well as differential operators d′ and d′′, there is a corresponding index

theorem which tells us, for example, that on Σ a genus g curve with no marked points and

L a line bundle, we have:

Ind(d′′L) = h0(Σ,L)− h1(Σ,L) =
∫
Σ

ch(L)Td (Σ) = degL+ (1− g) (20.23)

with ch(L) the Chern character, and Td(Σ) the Todd class. In particular, for L = OΣ the

structure sheaf, we have

Ind(d′′) = h0(Σ,OΣ)− h1(Σ,OΣ) = (1− g), (20.24)

so we can as usual, organize our string amplitudes according to a genus expansion, weighted

by λ−2Ind(d
′′), with λ the string coupling.

It is also of interest to try and calculate a scattering amplitude in this setting. To give a

sketch of how such a computation can proceed, we observe that from the generalization of

our free action (20.17) to the case of multiple ϕA:

Sfree[ϕ] =

∫
P1
Berk

dx
(
−GABϕ

A∆P1
Berk

ϕB
)
, (20.25)
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we can evaluate a correlation function between two vertex operators:〈
exp(ikAϕ

A(x)) exp(ilAϕ
A(y))

〉
= |δ (x, y)∞|

k·l , (20.26)

as would be associated with two tachyon vertex operators. Evaluation of string amplitudes

proceeds much as in the Archimedean case, namely, introduce closed string vertex operators:

Vj = exp(ikj · ϕ(xj)). (20.27)

Continuing in this vein, we can also see how to set up many of the standard notions from

ordinary open and closed string theory, for example we can build vertex operators such as:

V AB = d′ϕAd′′ϕB exp(ik · ϕ), (20.28)

as would be associated with the graviton (when A and B are symmetrized). The Virasoro

conditions on the momenta lead to the standard conditions on k2 = kAk
A, since we have the

some notion of a stress energy tensor.

So, for example, m-point tachyon scattering amplitudes will involve:

Mclosed
m-point ∼

∫
(A1

Berk)
m

dx1...dxm ⟨V1...Vm⟩ , (20.29)

where we have omitted various superfluous proportionality factors such as the string coupling

and the inverse volume of global “conformal” transformations. In the special case of four-

point tachyon scattering amplitudes, there is one “mobile point” x ∈ A1
Berk,which we cannot

fix using global conformal transformations of A1
Berk:

83

Mclosed
4-point ∼

∫
A1
Berk

dx |δ (x, 0)∞|
k1·k2 |δ (x, 1)∞|

k2·k3 , (20.30)

which we might view as a Berkovich space analog of the Virasoro-Shapiro four tachyon closed

string amplitude (see [270,271] for the Archimedean case). Here we have dropped the overall

dependence on the string coupling and for now we suppress the superscipts and subscripts,

since the context is clear.

One might also ask how “open string” amplitudes fit into this sort of picture. From the

way we have defined the hyperbolic Berkovich space HBerk = P1
Berk\P1(Cp), it seems natural

to view the open string as residing on the Galois orbit invariant subspace of “the boundary”

P1(Cp), namely just P1(Qp). In this sense, evaluation of tree level open string scattering

amplitudes is quite similar to what is usually proposed in the p-adic string theory literature.

The distinctions start to arise because rather than just considering a quadratic field extension

83This group should be viewed as the analytification of SL(2,Cp).
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of Qp, it seems more natural to consider the limiting behavior of field extensions, and the

ensuing analytification in Berkovich space as the “natural” arena for the closed string. For

these reasons, we will first focus on the case of our closed string, and only then turn to the

case of open strings (precisely the opposite line of development from how p-adic strings are

typically studied).

To proceed further, then, we need to evaluate this sort of expression. To carry this out,

we view Cp as the limit obtained from finite field extensions of Qp. Since A1(Cp) is dense in

A1
Berk, we expect that evaluation of equation (20.30) can be defined through a suitable limit

of the form:

M = lim
n→∞

Mn, (20.31)

with:

Mn =

∫
Qq

dx |x|k1·k2 |1− x|k2·k3 , (20.32)

in the obvious notation. In Appendix W we carry out this computation, and observe that

there is a well-defined limit as n → ∞. The end result is written in terms of a suitable

generalization of the Euler Beta function:

B(a, b) =

∫
A1
Berk

dx |x|a−1 |1− x|b−1 = 1

1− p−a
1

1− p−b
1

1− p−c
, (20.33)

where we have:

M =
∏

x=s,t,u

1

1− pα(x)
, (20.34)

where s, t, u reference the usual Mandelstam variables and we have, following the conventions

in [35], introduced:

α (x) = 1 +
1

2
x. (20.35)

As an amusing comment, it is also natural to consider the “adelic amplitude” produced

from taking the product over all the different primes. In this case, we get:

Madelic =
∏

p prime

Mp =
∏

x=s,t,u

ζ(−α (x)), (20.36)

where ζ is the celebrated Riemann zeta function. It would be interesting to give a physical

interpretation for the zeros of Madelic, perhaps in terms of its relation to the “prime at

infinity” which is implicitly specified by the condition:

MadelicM∞ = 1. (20.37)
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20.4.1 Current Algebras

The considerations presented above also show that it is possible to specify a notion of a chiral

current algebra on this worldsheet, and so in turn to implement a variant of the worldsheet

theory for the heterotic string. To see why, it is enough to again exploit the appearance of

the operators d′ and d′′. In particular, we supplement the left-movers by a collection of free

fermions, writing an action such as:

Sλ =

∫
Σ

kabλ
ad′′λb, (20.38)

where the indices a, b run over a set of flavor indices, and kab is a set of couplings. Here, the

λ’s transform as a section of K1/2
Σ , i.e., as “(1/2, 0)” differential forms (in complex geometry

terms). From this, we can clearly start following the usual procedure for implementing

a worldsheet current algebra, i.e., by considering composite bilinear operators built from

the λ’s. In particular, from the way we have set up the action principle, the structure of

correlation functions for the resulting currents:

Jab = λaλb, (20.39)

will be quite analogous to what happens in the complex setting. This also means that we

can introduce a notion of a target space gauge algebra, much as we would in the standard

heterotic string. The fact that we also have a notion of the conformal anomaly also suggests

that we have quite similar restrictions on the admissible gauge groups (which in the complex

setting follow from the condition of modular invariance).

20.5 Open Berkovich Strings

It is also natural to ask whether we can define a notion of open Berkovich strings. Here,

we expect to make closer contact with the p-adic string theory literature, where several

important structural features of the theory have already been worked out. The main thing

we will aim to do is see how to reconcile (if possible) our perspective on closed strings specified

on Berkovich space with these older considerations. In particular, we wish to understand

the potential ways in which open string structures such as Chan-Paton factors can arise in

this setting.

To begin, we note that our discussion of physics over the p-adics has emphasized the

“two-dimensional” nature of Qp, since, in contrast to the real numbers R, there are an

infinite number of p-adic numbers with the same norm, whereas in the real setting, there

are precisely two for each non-zero number. This is also related to the fact that there is no

total ordering on the p-adics, only a partial ordering as specificed by the norm of elements.

Now, in the Archimedean string, the open string worldsheet is, at tree level, just a disk, the
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boundary of which is an S1 ≃ P1(R). Consequently, we have a well-defined notion of local

path ordering on the circle, which allows us to introduce Chan-Paton factors, as well as a

way to multiply the corresponding matrices, i.e., just by composition of maps.

The absence of total ordering on the p-adics clearly complicates this. In [272], a proposal

was also given to rectify the problem which involves dividing up the p-adics into “positive”

and “negative” elements, as specified by whether they are in the image of the Norm map

NormL/Qp : Qq → Qp, with L a quadratic extension. Our present considerations clash

with this for a few reasons. First of all, in terms of our formulation based on Berkovich

space we have advocated, the extension of this notion eliminates all but 0 and 1 in Qp as

“positive elements”, which is clearly too restrictive. Said differently, why stop at quadratic

extensions?84 An additional concern is to remain somewhat true to the requirement that we

can extend our discussion beyond the simplest case of tree level string scattering processes.

That in turn means that we require a flexible notion of how we specify a “worldsheet with

boundary”.

How then to proceed? There are some complementary notions of a tree level worldsheet

with boundary that we can reference, and some of this is in accord with expectations from

the p-adic string literature (though we will necessarily differ at some important steps). Let

us then begin with a “first principles approach” and then show that this does reduce in

suitable approximations to a notion of a p-adic open string theory worldsheet. We will then

show that the proposed notion is flexible enough to accommodate the structures expected

from open string theory, such as Chan-Paton factors.

Compared with the case of the p-adics, Berkovich space is path connected, so we can

already see that it makes sense to discuss paths γ : [0, 1] → Σ, where Σ is some p-adic

analytic curve, as we would associate with a closed string worldsheet. To get a natural

notion of a “boundary” we need to find a way to pick out distinguished paths. One way to

proceed, at least for P1
Berk, is to note that there is a “hyperbolic space” HBerk = P1

Berk\P1(Cp).

The condition that we have something “one-dimensional” can then be taken as those points

of Cp invariant under Gal(Cp/Qp), i.e., just the p-adic numbers Qp. This would get us

close to the proposal for the worldsheet of the p-adic open string, but it does come with

some obvious drawbacks. For one, this “boundary” is not path connected, and as already

remarked, there is no total ordering of the elements, only a partial ordering as dictated by

just taking the p-adic norm of elements, as would be in line with our discussion of “radial

quantization” in the p-adic setting.

That being said, there is a sense in which we can interpret the standard open string

amplitude in terms of a formal contour integral. As explained in Appendix W, the main

point is that for the most part, the contributions to the four-point open string amplitude

can be reinterpreted as an integral over Qp, in which we introduce a “radial contour” γrad
consisting of points xm = pm for m ∈ Z, as well as another contour γ1 associated with the

84In the Archimedean setting this of course makes sense because C is a quadratic extension of R. That is
not so for Cp viewed as an extension of Qp.
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point 1 ∈ Qp. So, while this prescription is suggestive, it leaves open important conceptual

issues such as the ordering of Chan-Paton matrices in more general open string amplitudes.

On the other hand, we have also noted that Berkovich space is path connected, which

distinguishes it from both Qp and Cp. This in turn means that we can fix a particular closed

path γ : [0, 1] → P1
Berk, and use this to define a notion of “worldsheet boundary”. The

correspondence with actual boundaries obtained from the Berkovich topology, is, however,

often imperfect. For example, a ball BR of radius R consisting of points |z| ≤ R has a

boundary which may consist of only a finite number of points. Additionally, an annulus

specified by points r ≤ |z| ≤ R is, in Berkovich space, still simply connected! Again, this is

due to the fact that the space is tree-like. All of this means that we must be flexible in how

we specify a preferred notion of worldsheet with boundary.

Nevertheless, the existence of a path connected Berkovich space means that once we find

an appropriate contour γ : R → P1
Berk, ordering of Chan-Paton factors in the associated

Koba-Nielsen formula will also follow. To illustrate, since our vertex operators depend on

coordinates x ∈ P1
Berk, we can speak of the trajectory x(t), and so can label each vertex

operator Vi(ti) as referencing a coordinate ti for i = 1, ...,M in anM -point amplitude. This is

already helpful, because we can now specifically reference a notion of vertex operator ordering

on our designated path, and so can also consider multiplication of Chan-Paton matrices in

the order they appear along our trajectory. Much as we would with the Archimedean string,

we switch the order of multiplication once two points ti and t
′
i cross on the contour.

Summarizing the discussion so far, we have seen that the “standard” p-adic string ampli-

tude makes reference to a formal notion of a contour integral on Qp, while Berkovich space

readily provides us with a notion of connected paths.

Our plan will be to combine these two considerations by making use of an appropriate

tropicalization map Σ→ Σtrop, as induced by the map on affine n-space:

Trop: An → Rn (20.40)

(z1, ..., zn) 7→ (− log |z1| , ...,− log |zn|). (20.41)

As reviewed in Appendix V, this leads to a “skeleton” Σtrop → Σ which embeds in Σ. Our

plan will be to interpret this one-dimensional graph as specifying a generalized notion of the

worldsheet boundary.85

To illustrate, let us consider the affine line Σ = {x + y = 1} in A2, and its associated

map to R2. We view the projectivization of Σ as the variety (after a further analytification)

associated with the closed string worldsheet at tree level in string perturbation theory. The

85Observe that in the Archimedean setting over C, this leads to a map z 7→ − log |z| which amounts to
mapping z = reiθ to just its radial component. This produces an ordered set (one point for each radius), but
it is not quite the standard worldsheet boundary specified by the real locus Im z = 0. Of course, by channel
duality we can relate the two.
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tropicalization is spanned by the point sets:

Σtrop(Cp) =
{
(− log |x|,− log |1− x|) ⊂ R2 with x ∈ Cp

}
(20.42)

Σtrop(Qp) =
{
(− log |x|,− log |1− x|) ⊂ R2 with x ∈ Qp

}
, (20.43)

where here we have referenced the different choices of a ground field. There are a few

distinguished points, given by the regions near x = 0, x = 1 and x =∞, which produce the

asymptotic points in R2 given by (∞, 0), (0,∞), and (−∞,−∞), respectively (see figure 12).

There is also a distinguished midpoint, as given by all points x′ of norm one such that |1−
x′| = 1, all of which map to the point (0, 0) in R2. Observe now that the previously mentioned

“formal contours” γrad and γ1 map to segments of Σtrop. For example, the formal contour

γrad consisting of points xm = pm starts at (∞, 0) and passes through (0, 0), continuing

on to (−∞,−∞). Meanwhile, the formal contour γ1 consists of points 1 − pm for m > 0

which starts at (0,∞) and continues down to the origin (0, 0). In this case, there is also a

natural contour which passes through all the relevant points. All that is required is that

we weight each factor by 1/2. This path proceeds along the contour (∞, 0) → (0, 0) →
(0,∞) → (0, 0) → (−∞,−∞) → (0, 0) → (∞, 0). Now, although in Σtrop this involves

passing through each point more than once, the embedding in Σ can clearly lift to different

points, by maps such as x 7→ −x. So in other words, we can lift this path in γtrop ⊂ Σtrop to

a single path γ : [0, 1]→ Σ where the image of γ under the tropicalization map is just γtrop.

This accomplishes the desired path ordering, for an arbitrary number of vertex operator

insertions.

A pleasant feature of the present prescription is that it readily generalizes to more com-

plicated worldsheet topologies. Again, the main idea is that we start with a curve Σ and its

analytification Σan. The tropicalization of Σ(Qp) produces a natural notion of a “worldsheet

boundary”, as specified by Σtrop(Qp). Passing along each leg of the associated skeleton in

a path orderered fashion, we get an ordering of Chan-Paton matrices. Note also that by

breaking up the open string worldsheet into such finite segments, we can evaluate the results

much as we would in the standard Archimedean string.

20.6 Adding D-branes

In the Archimedean string, D-branes play an important role in accessing the non-perturbative

structure of string theory (see e.g., [273]). From the perspective of the worldsheet, these

arise by imposing Dirichlet boundary conditions along some of the directions of the string

worldsheet, e.g, letting σ ∈ [0, π] denote the spatial coordinate of the string worldsheet,

a D8-brane in a 10D spacetime is specified by the boundary conditions ϕ9|σ=π = 0 and

(∂ − ∂)ϕA|σ=π (accompanied by suitable conditions for worldsheet fermions).

Since we have developed a corresponding Berkovich open string, it is natural to ask

whether we can extend our considerations to include D-branes. In the context of the p-adic
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Figure 12: Depiction of the tropicalization of the affine line Σ = {x + y = 1} in A2. The
tropicalization Σtrop is induced by the map A2 → R2 given by (x, y) 7→ (− log |x|,− log |y|).
This leads to a (p, q) web of the sort familiar to physicists in the study of five-brane webs and
toric geometry. Here, we use this tropical geometry to define a path connected subspace in
Σan which we can use to specify open string amplitudes with Chan-Paton factors included.

open string, reference [65] interpreted the p-adic open string theory as ending on a spacetime

filling D-brane, i.e., the special case of all Neumann boundary conditions.86 Our aim in this

section will be to study the related question in the broader context where we also allow

Dirichlet boundary conditions along subspaces in the target space geometry.

To keep things streamlined, we mainly focus on the bosonic sector of the Berkovich

string since we expect there to be a natural extension of our discussion to include fermionic

degrees freedom. With this in mind, we shall consider Berkovich space worldsheets Σan

with “boundaries”. The main idea is already conveyed by returning to the hyperbolic space

HBerk = P1\P1(Cp), which can be viewed as having boundary P1(Cp), and which (as already

mentioned previously) has a “one-dimensional” boundary Qp given by the fixed point locus

of Gal(Cp/Qp). Since we have already shown (via tropicalization) how to pick out a path

ordered contour γ : R → P1
Berk, we can break up this path into smaller segments, i.e., we

write the interval [0, 1] as the union of smaller intervals Ij = [ej, ej+1] with e1 < ... < en+1

86Even here, however, one can ask whether contributions from closed p-adic strings can be taken into
account. The issue is that at least in the Archimedean setting, the endpoints of an open string can “join
up” and in so doing produce a close string. This then leads back to earlier questions about how to properly
formulate closed p-adic strings. Our philosophy here has been to build a closed string theory via Berkovich
space, since this seems to track better with the analytic structure present in the Archimedean setting.
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and e1 = 0 and en+1 = 1:

[0, 1] =
n⋃

j=1

Ij. (20.44)

On each such interval, one can then consider the image set γ(Ij) ⊂ P1
Berk. We can then

speak of a Dr-brane87 On this segment, we can impose Dirichlet and Neumann boundary

conditions via the following conditions:

Dirichlet : ϕA|Lj
= 0 for A = r + 1, ..., 10 (20.45)

Neumann : (d′ϕ
A − d′′)|Lj

= 0 for A = 0, ..., r. (20.46)

The second condition amounts to requiring a match of the different superdifferentials of the

closed string worldsheet at the boundary. Note also that we can equip each segment with a

suitable set of Chan-Paton factors, so we automatically also get a vector bundle structure on

each of our Dr-branes. The point we wish to emphasize here is that the analytic structure

present in Berkovich space affords us with a way to make much closer contact with what is

encountered in the Archimedean setting.

At this point, it should be clear that we can carry over much of the analysis present in the

Archimedean setting, including the study of curved backgrounds, and D-branes of various

dimensional support wrapped on suitable cycles. One can then ask, of course, whether the

resulting D-brane worldvolume theories have any resemblance to what is observed in the

Archimedean setting. It is well-known that even the target space action for p-adic string

theories exhibit some non-localities (see e.g., [65]), so we expect this to carry over to the

treatment of D-brane effective actions as well. In principle, this can be analyzed by carrying

out a study of vertex operator correlators in the Berkovich string, but we leave the study of

this for future work.

20.7 Back to Mixed Characteristic

Having seen that we can construct a Berkovich string with target space an Archimedean

geometry, it is natural to ask whether we can turn the discussion around once more and

also produce string theories where the target space is also a Berkovich space. In particular,

one could then establish a p-adic version of objects such as closed strings, open string and

D-branes.88 Performing suitable restrictions to Cp, Qp as well as residue fields such as Fq

and Fp, this would also provide a way build more exotic target spaces.

To accomplish this, we begin with two K-analytic Berkovich spaces X and Y , as well

87Unfortunately, p has been reserved for other notions so we speak of a Dr-brane as one which fills r spatial
directions, as well as the temporal direction, namely it is Dirichlet in the 10− (r + 1) directions transverse
to the brane. Similar considerations clearly extend to curved backgrounds.

88The attempt presented here to formulate this more precisely was prompted by questions from L. Borisov
and R. Nally.
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as an Archimedean geometry Z.89 For each of these, we can contemplate maps of the form

ϕZ,X : X → Z as well as ϕZ,Y : Y → Z.90 We treat X as our worldsheet (i.e., it has

dimension one) while Y is permitted to have arbitrary dimension. Clearly, we can also

consider morphisms ϕY,X : X → Y . Observe also that morphisms for the varieties defined

over Qp naturally extend to this setting. Now, we are interested in constructing a string

theory with target space Y rather than just Z. The main issue we face is how to set up a

suitable action principle. A natural way to proceed is to fix a particular map fZ,Y : Y → Z,

and then restrict to maps which factor through Y , namely we only consider ϕZ,X : X → Z

with ϕZ,X = fZ,Y ◦ ϕY,X , where in the path integral we sum over all possible ϕY,X : X → Y

but do not vary fZ,Y . For example, this allows us to define an action principle much as we

already did for the Berkovich string:

S[ϕY,X , fZ,Y ] =

∫
P1
Berk

dx G
(Z)
ABd

′ϕA
Z,Xd

′′ϕB
Z,X , (20.47)

in the special case where X = P1
Berk, and G

(Z)
AB is the metric on the Archimedean target

space Z. Here, we have used the notation d′Z,X and d′′Z,X to indicate the superdifferentials

associated with maps X → Z and their corresponding tangent spaces TX and TZ. We will

shortly need a generalization of this for higher-dimensional K-analytic spaces Y and their

maps Y → Z. We leave this somewhat implicit in what follows since we assume that we can

consider a patch of Y which looks like an affine K-analytic space Am
Berk. Now, since each

ϕA
Z,X is specified by composition, we expect that there is a chain rule in play which allows to

re-write this in terms of a “pullback metric” on Y . Indicating this metric as:

S[ϕY,X , fZ,Y ] =

∫
P1
Berk

dx g(Y )
µν ∂

′ϕµ
Y,X∂

′′ϕν
Y,X , (20.48)

where ∂′ and ∂′′ are superdifferentials defined for maps X → Y , and we have also introduced

the pullback metric:

g(Y )
µν = G

(Z)
AB∂

′
µf

A
Z,Y ∂

′′
νf

B
Z,Y . (20.49)

The machinery for constructing vertex operators for a Berkovich string with target Y

then proceeds as expected. Note also that the construction of D-branes also makes sense in

this setting, provided we have the superdifferentials ∂′ and ∂′′ for maps X → Y , since we

can then speak of both Dirichlet and Neumann boundary conditions (much as we did for

Archimedean valued maps).

That being said, an unpleasant feature of the above construction is that it requires us

89Here, we use the term somewhat loosely. All we mean a space defined over R, possibly either a pseudo-
Riemannian or Riemannian manifold. In other words, it is the standard target space for a string theory.

90The “backwords ordering” on the subscript is introduced here to make later composition maps more
intuitive (at least to us).
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to specify a choice of Archimedean target Z, as well as a choice of map f : Y → Z.

Presumably our construction should not really depend on these choices, but at the moment

the requirement that we can really “extract a number” from our action principle seems to

require it. There are, however, at least a few natural choices which immediately present

themselves.

One option would be to take Z = RM and just fix f as the tropicalization map already

encountered. This choice is canonical in the sense that much of our earlier considerations

implicitly made reference to tropicalization. Another option would be to take Z to be C×,
and to view f as a “character map”. At least for simple choices of Y such as affine space, or

some embedding in affine / projective space, we can induce a character map by restriction

from the ambient geometry, so this yields another way to fix both f as well as Z.

Is there anything to favor one such option over another? One demand we can make is

that starting from Berkovich space, a suitable “coarsening operation” should apply which

allows us to return to the treatment presented earlier in this note. To illustrate, observe that

we have canonical embeddings:

YBerk ← Y (Cp)← ...← Y (L/Qp)← ...← Y (Qp) (20.50)

XBerk ← X(Cp)← ...← Y (L/Qp)← ...← X(Qp) (20.51)

In particular, starting from a morphism X(Qp) → Y (Qp), we can extend it to a morphism

XBerk → YBerk.
91 So, we can opt to restrict our path integral to such restricted sums, and

this moves us much closer to the finite sums considered in characteristic p. Indeed, note

also that for a morphism X(Qp) → Y (Qp) presented locally as a collection of polynomials

over Qp, we can clear denominators and view them as polynomials over Zp. Passing to the

residue field Fp = Zp/pZp, we return to nearly the beginning. One can also perform a similar

operation for L/Qp and its residue field. In this extreme limit, however, it is unclear to use

whether the tropicalization map Y (Fq)→ RM has any meaning at all (since Fq has no norm

operation). Observe, however, that character maps involving Y (Fq)→ C× still make sense.

At least in this sense, this suggests using a character map operation to construct mixed

characteristic / finite characteristic strings and D-branes.

To illustrate how this would work in practice, let us fix Y a subvariety in Am and Z = C×.
Each point in Y can be viewed as a point (y1, ..., ym) ∈ Am. Now, on the locus (Cp)

m we

can specify a collection of character maps induced from χ : Cp → C×, so we can take the

product over all the characters to obtain a map:

Am → C× (20.52)

(y1, ..., ym) 7→
m∏
j=1

χ(yj). (20.53)

91How unique is such an extension? We do not know.
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Viewing C× as a flat cylinder, we can take the metric on C× to be given by:92

ds2C× =
dzdz

zz
, (20.54)

i.e., we have Gzz = Gzz = |z|−2 /2, in the obvious notation.

An interesting feature of this construction is that whereas our previous treatment re-

quired the path integral phase factor exp(iS/ℏ) to also be a character map, the present

construction would seem to produce a mod p action with no corresponding phase factor, and

would therefore be ill-defined. At the moment we do not see a cleaner way to proceed than

just inserting “by hand” an explicit character map operation (i.e., loosely speaking a factor

of i) once we reduce to a finite field. Indeed, the statistical field theory interpretation in

finite characteristic would suffer from the same ambiguities already pointed out in section

4.6.

92One can switch to coordinates z = exp(u), with ds2C× = dudu.
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21 More General Arithmetic Structures

In sections 16 and 20 we extended our analysis to cover more general numbers given by

N = 2πℏ a prime power. In this section our aim will be to generalize these notions to

consider the more general case where N has distinct prime factors, writing N = pa11 ...p
am
m .

To study this case, we continue with our theme of interpreting physical structures in the

language of arithmetic geometry. We begin by considering the special case:

N = p1...pm, (21.1)

namely the power of any prime factor is at most one. Thankfully, the relevant structures

have also been developed by mathematicians. The main idea we want to exploit is to view

the integers Z as a coordinate ring for a “curve”.93 In algebraic geometry, we construct our

geometric spaces by dealing with the spectrum of the ring, namely the set of maximal prime

ideals. In the present context, this is just the ideals generated by the primes as well as 0:

SpecZ = {⟨p⟩ for p a prime} ∪ {0}. (21.2)

In this way of thinking, SpecZ is just an affine curve with points specified by these maximal

ideals. The meaning of an integer such as N = pa11 ...p
ak
k is then that it is a collection of k

points. Moreover, the exponent ai indicates the “thickness” of that point as a non-reduced

scheme. See Appendix D for a brief discussion on some geometric aspects of SpecZ.
For a given physical field configuration, then, we can view our action S as a function

over the curve SpecZ, namely, the affine line, where we perform a formal continuation at

the origin. We can, of course, consider localization near any prime factor of N , and this will

lead us to a power series expansion in that prime. We denote the resulting subscheme of

SpecZ as (SpecZ)N .
With this in mind, we considering fibering all of the construction developed previously

for a fixed prime p,94 to construct a larger spacetime and target space:

X −→ X̃y
SpecZ

, and

Y −→ Ỹy
SpecZ

. (21.3)

Each stalk of the fiber is meant to be interpreted as a variety in characteristic p. We can

further supplement this by working over different finite fields such as Fq.
95

93Typically, one makes sense of curves over a field. Here, we are relaxing even this condition, so the
geometric picture will suffer somewhat. We will nevertheless persist with this language since it is helpful.

94We thank R. Donagi for emphasizing this feature of reduction modulo p to us.
95As well as further lifts to varieties in mixed characteristic as well as suitable analytifications, we return

to this later on.
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Now, extending the spacetime and target space in this way, we see that there is a sense

in which it is actually more naturally to perform a path integral over all maps from X̃ to

Ỹ . In terms of the geometry of SpecZ, this means that we instead take a product over all

possible prime numbers, but also all maps between these primes by treating ℏ as a map:

2πℏ : SpecZ→ SpecZ, (21.4)

where we assume 2πℏ(0) = 0. This removes the restrictions on exponents introduced in

equation (21.1).

A path integral phase factor which includes these effects is given by:∏
ℏ

∏
p

∏
x∈Xp

e(iSx/ℏ(p))eiSextra[ℏ,x] ≃
∏

x∈XN

e(
2πi
N

Seff
x ), (21.5)

where in the above, the additional term Sextra also captures more general possible hopping

terms between primes. On the righthand side of this expression we view the appearance of a

fixed N as the result of performing this product, with an effective action Seff encapsulating

these effects. Here, XN simply refers to the restriction of the fibers of X̃ to the subscheme

(SpecZ)N . To get a good approximation of S, we can also adopt a Wilsonian perspective,

integrating over primes p, starting with the small ones, and then moving to the bigger ones.

This provides a sense in which we can pass from short distances back to long distances.

Operator correlation functions also generalize. We view a physical field ϕ(p, xp) as having

support over the total space X̃ given as the fibration of X over SpecZ. For each prime factor,

the definition of the operator is specified in exactly the same way, the only issue is that we

should now write a local operator such as the one of line (3.16) as:

U(p, xp) = exp

(
i

ℏ(p)
ϕ(xp)

)
, (21.6)

with p ∈ SpecZ and xp ∈ Xp.

Clearly, evaluating correlation functions with this sort of procedure can quickly become

unwieldy. A well-motivated approximation is obtained by restricting 2πℏ to a special class

of maps of the form:

2πℏ : SpecZ→ SpecZ (21.7)

x 7→ xn. (21.8)

The reason these maps are “special” is that they simply send an ordinary point to a “fat

point” of the same type, just increasing its multiplicity. This affords us a notion of locality

on the primes, so it seems reasonable to make this further restriction.

At a practical level this also makes the reduction over a given prime more tractable, but
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still quite flexible. In this case, the path integral phase factor collapses to:∏
n∈N

∏
p

∏
x∈Xp

e(
2πi
pn

Sx). (21.9)

Additionally, the structure of operators such as those of line (21.6) also simplifies, and the

reduction mod pn can now be applied fiberwise.

All of the remarks about the emergence of a p-adic and real topology also apply to this

enlarged setting. Assuming there is an approximation of the full path integral in terms

of an effective action and some integer N = pa11 ...p
ak
k , we can consider each prime factor

individually and then the large N limit amounts to assuming that the exponents ai are all

sufficiently large. We thus expect this to produce the expected real topological structure in

the continuum limit. Similar comments apply for the corresponding analytifications of the

fibers. An interesting feature of working over C and Cp is that we also have (non-canonical)

isomorphisms X(C) ≃ X(Cp) ≃ X(Cp′). Of course, the structure of the corresponding

analytifications will be different, but this can be viewed as related to how we take a suitable

large N limit, as per our discussion in section 20.

21.1 Zeta Functions Revisited

As we have already remarked, evaluating the full path integral of line (21.5) is somewhat

unwieldy, but at least provides a general framework for recovering continuum notions of

spacetime. Now, in the context of applications to number theory, the idea of starting with

a general algebraic variety over Q and recasting this as a scheme over Z is a well known

procedure. In this context, reduction modulo a prime p then provides important arithmetic

information on the behavior of the geometry. For a generic algebraic variety, reduction with

respect to a generic prime p will produce a non-singular variety over Fp, and in such cases we

can speak of the corresponding Zeta function ZV,p(z), and its relation to a supersymmetric

index: ∑
n≥1

Trn
(
(−1)Fzn

)
= logZV,p(z) =

∑
n≥1

#V (Fqn)
zn

n
. (21.10)

We have also argued that this quantity can also be interpreted as the supersymmetric index

of a suitable characteristic p quantum mechanics problem.

Reduction modulo p may also result in a singular space, and this forms the basis for

defining the theory of the “conductor” of a variety. For generic varieties this sort of singular

reduction happens for a finite number of primes. We have also seen in subsection 13.3 that

on physical grounds, the structure of the supersymmetric index should allow us to make

sense of the Zeta function, even if there is a singular reduction.

Now, in the more general setting just introduced, we have been considering a further

fibration over SpecZ, so we can speak of the supersymmetric index obtained from working
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with all the different primes. If we restrict to the special case where the map 2πℏ of line

(21.7) is just the identity map (no fat points at all) then we just take the product over all

the different zeta functions. This produces the expression:

ZV,Q({zp}) ≡
∏
p

ZV,p(zp). (21.11)

In the arithmetic geometry literature it is customary to work in terms of a single uniform

fugacity. Introducing a complex number s (with suitable domain of definition to ensure

convergence of the product), we can write zp = p−s. Note that this means larger primes are

“penalized” in the associated partition function. Making this substitution, we arrive at the

Zeta function:

ζV,Q(s) ≡
∏
p

ζV,p(s), (21.12)

where we changed notation (ζ = Z) to emphasize the different variable dependence.

The present formulation also suggests some natural generalizations of these sorts of for-

mulae. Instead of just dealing with the identity map for 2πℏ : SpecZ → SpecZ, we can

consider more general powers. Evaluating the corresponding local Zeta functions and taking

the product over prime powers provides a more general set of objects to study.

21.2 Geometric Engineering Revisited

It is also interesting to revisit our discussion of geometric engineering, especially as a way to

formulate a suitable notion of gauge theory on the bigger space X̃ → SpecZ, and thus as a

way to formulate mathematical (and physical!) quantities of interest.

The general geometric notions we need are specified by working with arithmetic schemes.

The idea is to fix some variety V over an algebraic number field K (i.e., some finite field

extension of the rational numbers Q), and consider the ring of integers OK . Then, we can

consider the fibration V → Spec (OK) as obtained by reduction of the variety at prime ideals

of OK . Doing so, the total space has “one dimension more” than the reduction. Clearly, this

is precisely the situation outlined previously in the special case where K = Q and OK = Z.
A simplified but still important example is provided by the case of algebraic curves over K.

In this case, the total space is referred to as an arithmetic surface S. See figure 13 for a

depiction.

Our aim in this brief subsection will be to sketch how to use notions of geometric engi-

neering to sketch a formulation of a gauge theory on an arithmetic surface S. We expect that

similar notions also work for more general arithmetic varieties since geometric engineering

also extends to this broader setting. We will also find it convenient to allow K to sometimes

differ from Q, even though we expect the physically most interesting case is likely provided by

the “simplest situation.” One reason for doing this is that in previous discussion of geometric

engineering in characteristic p, we saw that the sharpest analogy with the characteristic zero
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case suggests working with the algebraic closure Fp.

To formulate gauge theory on S, we view it as an arithmetic surface of ADE singularities

X such that the total space is Calabi-Yau. We note that such a notion makes sense because

even in the setting of an arithmetic variety defined over a ring of integers such as OK , we

can still speak of a canonical sheaf (see reference [274]). To be explicit, consider the special

case of an A-type singularity. Then, we would write:

y2 = x2 + uN , (21.13)

where the locus x = y = z = 0 defines S. Of course, in the “standard setting,” we would

view this as engineering the Vafa-Witten system [188] as familiar from model building in

F-theory (see e.g., [275,171,276]). The non-trivial step in the characteristic zero setting has

to do with ensuring that the two notions of moduli spaces from gauge theory and singular

Calabi-Yau geometry actual specify the same degrees of freedom.

Here, we will simply use the geometry as a way to define what we could possibly mean

by gauge theory on the arithmetic surface, leaving a complete treatment for future work. In

accord with the usual characteristic zero case, we expect to have a notion of a vector bundle

E with an A-type structure group SL(N,K), and a Higgs field. Now, to see the appearance

of the vector bundle in our setting, we observe that we can perform blowups of X, even in

the arithmetic setting. Doing so, we observe the appearance of “fibral divisors” D1, ..., DN .

These can be viewed as divisors of an ADE singularity, which is then further fibered over

S.96 We can now see the appearance of the 2-cycle class [S] in the intersection pairing:

Di ·Dj = Cij[S], (21.14)

where Cij with i, j = 1, ..., N is the usual intersection theoretic Cartan matrix (−2’s on

the diagonal). Taking linear combinations of effective divisors, we then build up the usual

notion of a root system fibered over S. Implicitly, then, the deformations of line (21.13) are

specifying the Casimir invariants of a Higgs field:

Φ : E → E ⊗ KS, (21.15)

where the notion of KS as the canonical sheaf makes sense for an arithmetic surface, and

we view E as a sheaf on S which admits a group action by SL(N,K). Now, for each

prime p ∈ OK , we can fix our attention on the corresponding stalk Sp. This is akin to the

characteristic p Hitchin system we already encountered.

An interesting feature of this setup is that we can now discuss surface operators, as

associated with specifying a prescribed singularity structure for our Higgs field along a curve

96Here, the proper notion of divisor, and intersection of divisors implicitly makes reference to Arakelov’s
intersection theory [277,278] (see reference [274] for an introduction). This is necessary to stipulate because
we need to be able to specify what happens “at infinity,” in SpecOK .
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(or curves) in S. In the context of geometric engineering, this has been analyzed for example

in references [171–173]. Call one such curve Σ. Then, this also specifies a divisor in S, and

the Higgs field has a residue along Σ which is some element in the Lie algebra sl(N,K):

ResCΦ ∈ sl(N,K). (21.16)

In the geometric engineering setting, we can generate such profiles by colliding different

singularities together. For example, still within the context of our setup as in line (21.13),

introduce another arithmetic surface S ′ locally specified as the hypersurface x = y = v = 0.

Then, we can consider:

y2 = x2 + uNvM , (21.17)

as associated with SL(N,K) gauge theory on u = 0 and SL(M,K) gauge theory on v = 0.

The surfaces S and S ′ intersect along u = v = 0 which we view as a horizontal Arakelov

divisor in S.

In the characteristic zero setting we would say that there are “matter fields on Σ” as

specified by elements of H0(Σ,K1/2
Σ ⊗ (E ⊗ E ′) |C). Presumably there is a suitable concept

of this for divisors in arithmetic surfaces, via the analog of theta functions. In the special

case where the bulk vector bundles are trivial, there exists a Lie algebra valued pairing for

the zero modes (see [171] for the precise definitions) which we can use to specify the value

of the Higgs field residue:

ResCΦ = ⟨ψc, ψ⟩ . (21.18)

So, using concepts from geometric engineering, notions of surface operators (at least for

Higgs fields) and gauge theory over S still appear to make sense.

It would also be natural to investigate the effects of S-duality on such gauge theories.

Taking our cue from the characteristic zero setting, we can consider a product of an elliptic

curve E and an ADE singularity. For example the elliptic curve E can be specified in

Weierstrass form as y2 = x3+ fx+ g, with f, g ∈ K, and upon choosing an embedding in C,
we can also associate it with a fixed choice of complex structure parameter τ . Fibering this

geometry over our “4D spacetime” the arithmetic surface S, we can thus assign our gauge

theory the standard parameter τ which transforms under SL(2,Z) in the usual way:

τ 7→ aτ + b

cτ + d
with ad− bc = 1 a, b, c, d ∈ Z. (21.19)

So, at least in principle, the effects of S-duality can be studied in this framework.

21.2.1 Arithmetic Line Operators

Having come this far, we can also ask whether we can set up the usual notions of electric

and magnetic line operators in our gauge theory system. To begin, we exploit the structure
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of S as a fibration over SpecOK to define a formal one-form:

A = Apdp+ Axpdxp, (21.20)

where each p refers to a maximal prime ideal of OK as specified by the sheaf of differentials

in Ω1(SpecOK) with local differential dp and the fiber at each stalk comes with a differential

dxp as defined on the curve Sp, which is just a curve over the finite field Fq ≃ OK/pOK with

q = pr for some prime p and r > 0. We can view A as a one-form valued in sl(N,K), but in

which we also need to reduce each component in the stalk Axp mod the given prime p.

Our first aim will be to define a notion of an electric line operator. First of all, for the

vertical divisors, we are speaking of Axpdxp, and so we can specify holonomies by appealing

to the spectral cover construction for a curve over Fq, namely we first take a curve Σ over

Fq, and on the spectral cover Σ̃→ Σ we take a line bundle. Under the suitable pushforward

map, we then get a vector bundle, which in turn implicitly specifies a line operator for us.

So, the real issue here is to see if we can define a suitable notion of a line operator for

a horizontal divisor, as specified by a section P : SpecOK → S. To do this, we first pick

an embedding K ↪→ C, and order the primes p according to their absolute values, viewed

as standard complex numbers. Each prime can then be viewed as living on the geometric

cylinder C×. We can then specify a partial ordering on SpecOK , and for ease of exposition

we will assume this is a total ordering (as occurs, for example, in the special case SpecZ).
This means we also have a notion of a path ordered exponential. The last ingredient we need

to specify is a choice of representation R for sl(N,K), and we denote the resulting matrix

valued connection as A(R) = AaT a
(R), where the T a are the generators of the lie algebra in

the representation R. We view the restriction A
(R)
p on each stalk as implicitly specified by a

representation on sl(N,Fq) ≃ sl(N,OK/pOK). We can then define an ordered product:

WR =
∏
p

exp

(
2πi

p
A

(R)
p

)
. (21.21)

Observe that we have inserted pre-factors of 2πi/p. The prime p is the characteristic of the

finite residue field Fq ≃ OK/pOK . We have included this factor because we need to make

sure thatWR makes sense as an operator acting on the Hilbert space defined by each stalk Sp

of the arithmetic surface. In physical terms, the operator WR is a path ordered exponential,

and specifies an electric line operator.

What about the magnetic line operators? At least classically, we see what to do using

our geometrically engineered setup. Indeed, since we have an elliptic curve over K with a

choice of embedding in C, we can also specify the A-cycles and S-dual B-cycles on the elliptic

curve.

In the quantum setting the situation is more subtle because we view the electric line

operators as order operators and the magnetic line operators as disorder operators, namely,
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we prescribe boundary conditions [189]. But we know precisely how to implement this prime

ideal by prime ideal in OK/pOK . Indeed, what we do is examine the intersection of the image

of P : SpecOK → S with each vertical stalk. In the associated curve Sp, we are marking a

boundary condition, as specified by a choice of representation in sl(N,Fq) ≃ sl(N,OK/pOK).

There is a rather rich story explained in [189] for how these operator can act on a 2D space

obtained by “dimensional reduction”, and this provides a physical basis for the geometric

Langlands program. There seem to be some parallels with the story we are setting up here

which would be interesting to explore further.

We leave a more complete treatment of these possibilities for future work.
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Figure 13: Depiction of a geometric surface (top) in characteristic zero, viewed as a Riemann
surface fibered over a cylinder, as well as the analog for an arithmetic surface (bottom) viewed
as a fibration over SpecOK , with K an algebraic number field and OK its ring of integers.
For each prime p, the fiber is given by the reduction of a variety over K over that prime. We
have also drawn a depiction of a horizontal divisor Σ, as well as its intersection with some
examples of vertical divisors such as Sp and Sp′ , with p and p′ primes of SpecOK .
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The End
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22 Conclusions and Further Speculations

In this note we have studied a class of physical systems in which the degrees of freedom are

discretized. At some broad level, this can be phrased as taking a different choice of “natural

units” in which the reduced Planck constant is instead set to the value ℏ = N/2π with

N an integer, which we view as a highly quantum regime of a physical system. From this

starting point, we have shown that when N = p a prime number, that the resulting physical

system can be understood in terms of arithmetic geometry in characteristic p. Additionally,

we have seen that this same structure persists when N is a more general integer. We have

developed the analog of bosonic and fermionic degrees of freedom, and have also sketched

how more general field theories can be written in characteristic p. This allowed us to present

a (speculative) physical interpretation of the Hasse-Weil Zeta function. An additional feature

of our considerations is that some well-established algebro-geometric correspondences appear

to have close characteristic p analogs. This in turn suggests that the highly quantum regime

of a string compactification may simply involve relaxing the choice of algebraic field. We

have also seen that in suitable limits, more refined topological structures appear to emerge.

For example, a suitable analytification procedure allows us to adapt much of the machinery

of the Archimedean string to the p-adic analytic setting. In the remainder of this section,

we discuss some further speculations, as well as possible areas for future investigation.

We have taken some first steps in understanding the structure of loop corrections. As

one might have expected, the discretized nature of our computations leads to well-regulated

expressions in which a number of loop corrections identically vanish. We have also indicated

that more general loop corrections are indeed possible, again indicating evidence for a non-

trivial quantum theory. Along these lines, it would be quite interesting to investigate the

structure of renormalization, and in particular the content of renormalization group flow

across discretized parameters. One way to set up such an analysis would be to explicitly

start integrating out some of the coefficients appearing in our mode expansions, and tracking

the resulting effect on correlation functions of the theory.

One of the elements we have hinted at but have not fully developed is the structure of

cohomological theories as specified by supersymmetric field theories in characteristic p. It

would seem worthwhile to develop this further.

We have also presented a general expectation that some of the characteristic zero corre-

spondences between gauge theories defined on algebraic varieties and singular local Calabi-

Yau spaces extend to characteristic p. This is particularly intriguing in light of the physical

formulation of the geometric Langlands program, which relies heavily on a topological twist

of N = 4 Super Yang-Mills theory [189]. From the perspective of geometric engineering, it

is natural to ask whether there is a characteristic p analog of this gauge theory which could

be geometrically engineered. Very speculatively, one might use this to provide a physical

underpinning for some aspects of the Langlands program. This would be in line with our

other remarks that we can formulate a notion of a gauge theory over arithmetic surfaces

186



with reduction along each fiber producing a corresponding characteristic p Hitchin system.

Indeed, reference [72] noted that at least for suitable flux compactifications and their

relation to arithmetic Calabi-Yau threefolds, there is a notion of modularity which might

persist based on the associated Zeta functions (see also [73]). In the present note we have

provided some additional physical motivation for such structures. It would seem interesting

to develop this further.

Perhaps more directly, we also sketched how geometric engineering can be used to pro-

vide an operational definition of certain gauge theories on an arithmetic surface. Indeed,

suitable reductions over a prime in this setting return us to the case of a Hitchin system in

characteristic p, so it would seem natural to study the structure of physical notions such as

S-duality and its action on electric and magnetic surface operators (perhaps along the lines

of [189]).

Continuing in the vein of possible mathematical applications, we have seen that at least

when N is a prime number p, that some physical structures can be formulated in terms of

the geometry of schemes defined over the finite field Fp or some extension thereof. Writing

p = 2πℏ, it is natural to ask whether the physical limit ℏ→ 1 has any bearing on questions in

arithmetic geometry. This sort of limiting procedure is sometimes mentioned in the context

of what could possibly be meant by the finite field Fun, namely, the field with “one element”

(see e.g., [279] for a recent discussion). It would be interesting to see whether physical

considerations provide a new perspective on these questions.

In terms of “practical applications,” it has been well appreciated for some time that el-

liptic curves over finite fields can be used to build examples of public-key encryption schemes

(see e.g., [280–282]). One of the (at least original) motivations for the present work was to see

whether the families of elliptic curves used in F-theory compactifications can be transported

to the realm of finite fields, thus providing a specific class of encryption schemes involving

higher-dimensional varieties defined over finite fields. It would be interesting to revisit some

of the classic constructions of F-theory backgrounds with such an application in mind.

The discretization of a physical theory immediately raises additional questions in the con-

text of quantum gravity. For example, in reference [14] it was argued that Newton’s constant

might be quantized in units of 1/f 2
π , with fπ a mass scale of a non-linear sigma model and in

references [15–17], it was argued that the Fayet-Iliopoulos parameter of a supergravity theory

might be quantized in units of 2M2
pl. An additional hint at the quantization of fundamental

parameters appeared in [283], which argued that in appropriate decoupling limits, quantities

such as α−1GUT of a Grand Unified Theory (GUT) might also be discretized. The present note

has taken some steps at understanding some examples of this sort, including an analysis of

Planckian scale FI parameters. It would be interesting to see whether the discretization of

other physical parameters can also be understood using methods from arithmetic geometry.

At a practical level, the construction we have presented has the merit of dealing with

systems with discretized degrees of freedom. This in turn means that numerical computations
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should be possible as well. Since, however, we have mainly had to work with complex phases

(at least in the characteristic p > 0 case), there is no guarantee that the resulting sums will

be numerically stable. On the other hand, we also saw how to setup a statistical field theory

formulation, especially in the p-adic and p-adic analytic case. It would be interesting to

examine the numerical stability of such computations, especially in comparison with lattice

field theories defined in Euclidean space.

A related comment is that while we have emphasized that our field theories typically

involve discretized spacetimes and target spaces, the space of morphisms is still infinite. It

would be very interesting to consider in detail the matrix model approximation obtained by

just working with point set maps. We expect that in this case, there is some loss of fidelity

which is only truly recovered in the large matrix limit.

Some of our physical picture can be interpreted in terms of quantum error correcting

codes. As a potential practical application of our considerations, it is natural to ask whether

our path integral formalism implicitly performs a sweep over candidate quantum error cor-

recting codes. It would be interesting to see whether the resulting quantum error correcting

codes are “optimized” in any practical sense.

Our construction of field theories also highlighted that there is a characteristic p analog

of the graviton, which we associate with a family of symmetric bilinear forms. We also

saw that in characteristic p, there is little meaning to the “signature” of a metric since

there is no ordering of elements in Fp. Interpreting the characteristic p limit of a string

compactification as the highly quantum regime of gravity, this suggests that in this discretized

setting, distinctions between Lorentzian, Euclidean or more general spacetime signatures

evaporate.

An intriguing feature of the present considerations is that one can view our construction

at its most primitive level as specified by a Grothendieck topology for a suitable category

where this a notion of “quasi-locality” even in characteristic p. From this, we saw how the

structures of classical and quantum error correcting codes emerge from a suitable adaptation

of a path integral defined in characteristic p. We have also sketched how standard continuum

physics could emerge from these discretized considerations in a suitable large N limit, both

in terms of its connection to p-adic formulations of physics, as well as standard formulations

over the real numbers.

Along these lines, we have introduced a new notion of p-adic strings in which worldsheets

are associated with p-adic analytic spaces. This appears to retain far more of the structure

present in the Archimedean case, and suggests a general template for analyzing the onset of

non-local structures in string theory. It is also tempting to generalize beyond the “Berkovich

string” to an object such as the “Perfectoid string” (in the sense of Scholze [284], see [285]

for an early survey). We do not know how to do this, but it is a natural thing to try next.

One element which the analytification procedure helps to clarify is the sense in which

other celebrated structures from the Archimedean setting such as closed strings, open string
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Chan-Paton factors, as well as D-branes can be taken into account in the non-Archimedean

setting. Moreover, we sketched how, through a sequence of ensuing “coarsening” operations,

we can then return all the way to characteristic p > 0 geometries. We expect that filling

out this procedure more completely would help to bolster / refine some of the other specu-

lations presented elsewhere throughout this note. For example, in the context of geometric

engineering of quantum field theories via string compactification, the localized degrees of

freedom of the quantum field theory arise from D-branes wrapped on collapsed cycles. With

an improved characterization of D-branes in such p-adic analytic spaces, one could more

directly track the resulting degrees of freedom.

As we briefly discussed, a curious feature of many topological quantum field theories is

the ubiquitous appearance of phase factors in Q/Z (namely, complex phases given by a root

of unity). Moreover, in many bordism computations, one also finds that the computation

is often p-local over a finite number of primes. We sketched how to build quasi-topological

actions in the characteristic p > 0 setting, so it is natural to expect that in the p-adic

analytic setting we can develop the requisite topological field theories as well, including the

corresponding cobordism theories.

Concerning S-matrix observables, a related comment here is that recently it was conjec-

tured that much of the mathematical structure of flat space observables such as the S-matrix

of quantum field theory can be understood in the general framework of tame functions [286]

(for applications in the context of physics, see also [287–290] and for a review of the relevant

mathematical structures, see reference [291]). The general line of argument establishing this

is to first show that scattering amplitudes are in fact (at least to reasonable loop order)

characterized by period integrals of a Calabi-Yau space [292–294, 286, 295]. Since these pe-

riod integrals are in turn governed by a Pichard-Fuchs differential equation, it is clear, à la

Dwork / Candelas and de la Ossa and its generalizations that the same structure carries

over to the p-adic setting as well. In particular, it is tempting to reinterpret the appearance

of tame geometry as the requirement that relevant observables of quantum gravity remain

well-behaved under a change of ground field. This suggests another avenue of investigation

which would be exciting to explore.

Indeed, the present algebro-geometric perspective suggests a somewhat different starting

point for understanding the physical origins of p-adic strings and p-adic holography, and the

potential implications for physics defined over the reals. It would be interesting to develop

this further.
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But that is enough speculation for one note.
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A 1D Lattice Systems

In this Appendix we present a brief analysis of some discretized 1D systems modulo N .

We anticipate that similar formal manipulations are available in more general field theories,

which would be amenable to a numerical analysis. Although we have emphasized that the

proper framework for doing our computations is based on integrating over the moduli space

of morphisms between schemes in characteristic p, for “practical purposes” calculating with

respect to a fixed lattice field theory formulation should provide an adequate approximation

for many purposes. The more general formulation seems necessary to fully capture the

arithmetic geometry associated with these systems. Before proceeding, we should of course

remind the reader that what is frequently done in lattice approximations to field theory is

to consider discretizing spacetime, but to allow continuum valued fields. Here, we are asking

a slightly different question since we are discretizing both the source and the target spaces

right from the start.

With all of this in mind, we now consider a lattice formulation for a 1D system with a

discretized time direction in which the reduced Planck constant satisfies:

ℏ =
N

2π
. (A.1)

As we have already mentioned in section 3, this sort of discretization also impacts the time

evolution operator, restricting us to discretized spacetimes. Our plan in this section will be

to analyze a few explicit lattice systems where we take the time direction t ∈ Z/NZ.
Throughout our analysis we shall implicitly assume 2 does not divide N so that 2 is

an element of the group (Z/NZ)×, the multiplicative group of integers modulo N . This is

mainly for ease of exposition; one can relax this assumption at the expense of not writing

expressions such as 1/2 in the definition of the action.97

So, we take as our action:

S[ϕ] =
∑

t∈Z/NZ

L[ϕ(t)] (A.2)

with:

L = T − V, (A.3)

where the kinetic term is given by:

T =
∑

1≤i,j≤N

1

2
Γijϕ(i)ϕ(j). (A.4)

and for now, we do not specify the potential V (ϕ). To make things concrete, we shall assume

97We do this to maintain contact with the “standard” presentation of Lagrangians, but we caution that
its meaning in the arithmetic setting is somewhat different; the expression 1/2 is represented by the integer
(N + 1)/2.
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that Γ is an N × N matrix which takes the form of a specific 1D lattice Laplacian with

boundary conditions at the ends of the lattice:

Γ =


2 −1
−1 2 −1

−1 ... −1
−1 2 −1

−1 2

 . (A.5)

Where to illustrate the main ideas we have chosen Γ so that that it does not have zero modes.

This case is helpful because we can bypass various subtleties having to do with zero modes.

That being said, we can of course make more general choices.

Our plan will be to analyze some aspects of this system. We mainly focus on the case of

N = p a prime number, but also discuss a generalization to N = pa, which would correspond

to a “fat point” of SpecZ.
We first consider the case of aD = 1 massless free scalar, and then turn to some cases with

a potential switched on. Most of the manipulations we use are covered in standard quantum

mechanics and quantum field theory textbooks (see e.g., [296–298,297,299,300,141,301]). We

include these computations here for the reader unfamiliar with these sorts of manipulations.

The main subtlety we encounter will have to do with obtaining a propagator, and analyzing

the resulting correlation functions.

A.1 The D = 1 Free Scalar

We start with a 1D free scalar reduced modulo N = pa, namely we set V = 0. To evaluate

correlation functions, we introduce a source term J(t) and study the generating function for

correlators:

Z[J ] =
∑

ϕ(1)∈Z/NZ

...
∑

ϕ(N)∈Z/NZ

exp

(
2πi

N

( ∑
1≤i,j≤N

1

2
Γijϕ(i)ϕ(j) +

N∑
t=1

J(t)ϕ(t)

))
. (A.6)

A general comment here, already remarked upon in the main body of the text, is that

the path integral here clearly truncates to a finite sum, as befits a lattice approximation.

In the main body, we have emphasized the important role of having an infinite number of

morphisms, but this of course complicates the evaluation and regulation of the accompanying

infinite sums. We view expressions such as equation (A.6) as an approximation to the other

actions / path integrals studied in the main body.

Now, in characteristic zero, it is natural to expand in “Fourier modes.” This presents

some complications, especially when reducing mod pa. Rather than follow this route, we will

instead stick to position space.
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The first point we want to make is that the determinant of Γ is:

det Γ = N + 1 ≡ 1modN. (A.7)

So the inverse matrix with entries in Z/NZ makes sense.

We now can write the action with a source term added as:

S[ϕ] =
1

2
Γij(ϕ(i) + Γ−1ii′ J(i

′))(ϕ(j) + Γ−1jj′J(j
′))− 1

2
Γ−1ij J(i)J(j), (A.8)

where in the above, we have summed over repeated indices. In the above expression we have

introduced the inverse matrix Γ−1, which is being computed in Z/NZ. In particular, we are

viewing the entries of Γ−1ij as being in Z/NZ rather than 1
N+1

Z ⊂ Q. This is the “natural”

choice to make because all of our other quantities, including ϕ(i) and J(i) are valued in

Z/NZ.
The integrand of the generating function Z[J ] now takes the form:

exp

(
2πi

N

(
1

2
Γij(ϕ(i) + Γ−1ii′ J(i

′))(ϕ(j) + Γ−1jj′J(j
′))− 1

2
Γ−1ij J(i)J(j)

))
. (A.9)

The point is that for each ϕ(i), we sum over all entries anyway, so the shift by Γ−1ii′ J(i
′) is

“harmless”. So, we can write the generating function as:

Z[J ] = Z[0] exp

(
2πi

N

(
−1

2
Γ−1ij J(i)J(j)

))
, (A.10)

just as we would in characteristic zero. We caution, however, that this similarity is somewhat

deceptive since, for instance, the inverse of Γ is computed in Z/NZ rather than Q.

Evaluating correlation functions superficially proceeds as in characteristic zero by taking

functional derivatives of the sources:

⟨ϕ(t1)...ϕ(tm)⟩ =
(

1

Z[0]

ℏ
i

δ

δJ(t1)
...
ℏ
i

δ

δJ(tm)
Z[J ]

)
J=0

. (A.11)

As an example, we have, for 1 ≤ s, t ≤ N :

⟨ϕ(s)ϕ(t)⟩ = −ℏ
i
Γ−1st = − N

2πi
Γ−1st . (A.12)

But such expressions are, by themselves, ambiguous because operators such as ϕ(t) can be

viewed as taking values in the integers, rather than Z/NZ. We can, however, replace these

expressions by correlation functions such as:

⟨exp(2πiαϕ(s)/N) exp(2πiβϕ(t)/N)⟩ = exp

(
−2πi

N
αβΓ−1st

)
. (A.13)
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Similar considerations hold for higher point correlation functions, via a simple application

of Wick’s theorem.

It is also interesting to directly analyze the behavior of the propagator Γ−1 for different

choices of N . To keep things manageable, we compute the inverse for N a prime number.

To illustrate, here are the first few inverses:

p = 3 : Γ−1 =

 0 2 1

2 1 2

1 2 0

 =

 0 −1 1

−1 1 −1
1 −1 0

 (A.14)

p = 5 : Γ−1 =


0 4 3 2 1

4 3 1 4 2

3 1 4 1 3

2 4 1 3 4

1 2 3 4 0

 =


0 −1 −2 2 1

−1 −2 1 −1 2

−2 1 −1 1 −2
2 −1 1 −2 −1
1 2 −2 −1 0

 (A.15)

p = 7 : Γ−1 =



0 6 5 4 3 2 1

6 5 3 1 6 4 2

5 3 1 5 2 6 3

4 1 5 2 5 1 4

3 6 2 5 1 3 5

2 4 6 1 3 5 6

1 2 3 4 5 6 0


=



0 −1 −2 −3 3 2 1

−1 −2 3 1 −1 −3 2

−2 3 1 −2 2 −1 3

−3 1 −2 2 −2 1 −3
3 −1 2 −2 1 3 −2
2 −3 −1 1 3 −2 −1
1 2 3 −3 −2 −1 0


. (A.16)

As an example where N is not a prime number, here is the propagator over N = 32:

N = 32 : Γ−1 =



0 8 7 6 5 4 3 2 1

8 7 5 3 1 8 6 4 2

7 5 3 0 6 3 0 6 3

6 3 0 6 2 7 3 8 4

5 1 6 2 7 2 6 1 5

4 8 3 7 2 6 0 3 6

3 6 0 3 6 0 3 5 7

2 4 6 8 1 3 5 7 8

1 2 3 4 5 6 7 8 0


. (A.17)

A.2 Adding a Mass Term

A common deformation of the free scalar involves adding a quadratic term in the physical

fields. Let us consider adding a perturbation such as:

V (ϕ) =
1

2
λϕ2, (A.18)
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which is just a mass term for the scalar. All this does is modify the diagonal entries of the

kinetic term operator so that we now have:

Γ̃ij = Γij − λδij. (A.19)

It turns out that the structure of Γ̃ can be quite sensitive to the choice of perturbation.

To see why, we again ask about the eigenvalues of our matrix Γ, as determined by the roots

of its characteristic polynomial. For example, reference [302] finds:

det(λIN×N − Γ) = UN

(
λ

2
− 1

)
, (A.20)

where UN(x) is a Chebyshev polynomial of the second kind.98 Restricting to λ ∈ Z/NZ, we
can tabulate when this polynomial vanishes. This gives a sense of how frequently a mass

parameter will end up generating a zero mode “by accident.” We give the number of zeros

for N = pa for p and a “small numbers”:

# zeros p = 3 p = 5 p = 7 p = 11 p = 13 p = 17

p1 1 3 3 5 7 9

p2 1 1 1 1 1 1

p3 1 3 3 5 7 9

p4 1 1 1 1 1 1

(A.21)

So, we see that for N = p a prime number, nearly half of the possible deformations produce

a zero mode! We note that this pattern appears to also persist for N = pa for a odd.

A.3 Adding a ϕp Potential

To analyze some additional structures in this setting, we now specialize further to the case of

N = p a prime number. We can consider adding a perturbation by a potential energy term.

While we expect a full analysis may be difficult, there are a few simplifications which occur

for specific sorts of perturbations. To illustrate, we now switch on a non-trivial potential:

V (ϕ) = λϕp. (A.22)

Now, in characteristic zero, this is a challenging system to study, and a common strategy

is to resort to perturbation theory in the parameter λ. In characteristic p, however, note

that all elements of Fp satisfy:

ϕp = ϕ for ϕ ∈ Fp. (A.23)

98Recall that the Chebyshev polynomials of the second kind are defined inductively via the following
recursion relation: Begin with U0(x) = 1, and U1(x) = 2x. Then, Um+1(x) = 2xUm(x) − Um−1(x) for
m ≥ 1. For additional details and review, see e.g., [303] as well as [304].
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So, assuming that ϕ ∈ Fp, we can simplify this potential to:

V (ϕ) = λϕ. (A.24)

We emphasize that here we are again assuming the “lattice approximation” is in effect; such

a simplification is not available if we treat ϕ as a a genuine morphism between schemes.

The generating function for correlation functions is also straightforward to evaluate.

Adding a source term as in our previous example, the action is:

S =
∑
i,j

1

2
Γijϕ (i)ϕ(j) +

∑
i

(−λϕ(i) + ϕ(i)J(i)), (A.25)

So if we view the λ’s as specifying a constant function λ(i) = λ for all i, we can complete

the square as before:

S =
1

2
Γij(ϕ(i)+Γ−1ii′ (J(i

′)−λ(i′))(ϕ(j)+Γ−1jj′(J(j
′)−λ(j′))− 1

2
Γ−1ij (J(i)−λ(i))(J(j)−λ(j)).

(A.26)

So in other words, we can just make the substitution J 7→ J − λ.

A.4 Another Simple Potential: ϕp+1

Let us again work in the special case N = p. Here we consider a few additional examples of

potentials which where we can compute in exact terms the associated correlation functions.

As a first example, consider switching on the non-trivial potential:

V (ϕ) = λϕp+1. (A.27)

Again assuming that we are working in the lattice approximation so that we can treat ϕ as

valued in Fp, we observe that since ϕp = ϕ, we have:

ϕp+1 = ϕ2 for ϕ ∈ Fp. (A.28)

In particular, this means that adding such a potential interaction amounts to just adding

a mass term, a case we already considered in section A.2. A particularly amusing case to

consider is p = 3, for which we observe that “ϕ4 theory” collapses to the case of a free field

theory. Of course, for more general values of the prime p, no such simplification is available.
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A.5 A Deceptively Simple Potential: ϕm(p−1)

As a seemingly “trivial” example, consider again the special case N = p, but now with the

potential:

V (ϕ) = λϕm(p−1), (A.29)

where m ∈ Z>0 is a positive integer. In this case, we observe that for any non-zero ϕ ∈ Fp,

we have:

ϕp−1 = 1 for ϕ ∈ F×p . (A.30)

So in these cases, V (ϕ) evaluates to λ. On the other hand, when ϕ = 0, V (ϕ) evaluates

to zero. In the end, then, this case turns out to not be entirely trivial, in spite of initial

appearances.
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B Lattice versus Hasse Derivatives

In this note we have alluded several times to the intuition that we can replace lattice deriva-

tives for physical fields with derivatives of polynomials in characteristic p. In this sense, we

can always view the lattice formulation as providing an approximation. We emphasize, how-

ever, that the space of polynomials retains further smooth structure which is often absent in

lattice field theory. In this Appendix we discuss some further aspects of various notions of

derivative in this setting.99

For ease of exposition, we focus on the case of a degreeM polynomial in a single variable

ϕ(t) ∈ Z[t], and its reduction modulo N = pa a prime power. For now, we do not restrict the

degree of the polynomial ϕ(t) so in principle we can allow the polynomial to have degree larger

than N . Recall that in the lattice formulation, we consider evaluations of the polynomial

at a generic point x ∈ Z/NZ, and construct suitable finite differences. We can also see the

appearance of derivatives of polynomials via the Taylor expansion:

ϕ(t+ x) =
m∑
r=0

D(r)ϕ(t) · xr, (B.1)

where D(r) refers to the rth Hasse derivative,100 which acts on a monomial tn with 0 ≤ r ≤ n

as:

D(r)tn =
n!

r!(n− r)!
tn−r, (B.2)

and yields zero when r > n. The key point for us is that for each monomial, there is at least

one Hasse derivative which is non-zero. Scanning over the different values of x, we get a set

of linear relations between the values of ϕ(t+ x) and the Hasse derivatives:
ϕ(t)

ϕ(t+ 1)
...

ϕ(t+N − 2)

ϕ(t+N − 1)

 =


1 0 ... 0 0

1 11 ... 1M−1 1M

1 21 ... 2M−1 2M

...
...

...
. . .

...

1 (N − 1)1 ... (N − 1)M−1 (N − 1)M

 ·

D(0)ϕ(t)

D(1)ϕ(t)
...

D(M−1)ϕ(t)

D(M)ϕ(t)

 ,

(B.3)

or more succinctly:

ϕ(t+ j) =
M∑
r=0

CjrD(r)ϕ(t), (B.4)

where Cjr are the entries of the N×(M+1) matrix implicitly defined by equation (B.3). The

key point for us is that given the collection of Hasse derivatives, we can finite differences, as

99Again, compared with standard lattice field theory, here we are discretizing both the source and target
spaces.
100See e.g., [305].
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would be associated with the lattice derivative. For example, the first lattice derivative at t

is given by:

Dlatϕ(t) ≡ ϕ(t+ 1)− ϕ(t), (B.5)

and the second lattice derivative at t is given by:101

D2
latϕ(t) ≡ ϕ(t+ 1)− 2ϕ(t) + ϕ(t− 1). (B.6)

Similar considerations hold for the higher lattice derivatives. The important point for us is

that these lattice derivatives always make reference to a finite set. Indeed, strictly speaking

when we discuss lattice derivatives, t is no longer a formal variable, but is to be viewed as

being evaluated at a specific point of Z/NZ.
Turning the discussion around, we can also ask whether we can start from a collection

of finite evaluations and reconstruct the full set of Hasse derivatives, and thus implicitly the

full polynomial ϕ(t). If M ≥ N , then there are in general more Hasse derivatives than finite

differences. This illustrates that beyond a certain point, our lattice approximation will not

work, but the formulation of physical fields as morphisms will still apply.

If, however,M = N , there is a chance that we can still reconstruct all the available Hasse

derivatives directly from finite differences. As we now explain, this works when N = p, but

for N = pa for a > 1, more care is needed since we cannot take inverses in (Z/NZ)×, the
multiplicative group of integers modulo N .

To establish this, we observe that C is an example of a Vandermonde matrix :

Vand(x1, ..., xN) =


1 x0 x20 ... xM0
1 x1 x21 ... xM1
...

...
...

. . .
...

1 xM x2N ... xMM

 . (B.7)

and in our case, we have xj = j for j = 0, ...,M . Now, the determinant of a general

Vandermonde matrix is given by:

detVand(x1, ..., xN) =
∏

0≤i<j≤M

(xj − xi). (B.8)

101It would of course have been more pleasant to define a lattice difference via the more symmetric expression
“Dϕ(t) = ϕ(t+1/2)−ϕ(t−1/2)” since one could then consistently iterate to produce the higher derivatives,
e.g., “D2ϕ(t) = Dϕ(t + 1/2) − Dϕ(t − 1/2) = ϕ(t + 1) − 2ϕ(t) + ϕ(t − 1)”. Unfortunately, while “1/2”
does indeed make sense when working over (Z/NZ)× for N relatively prime to 2, the meaning of 1/2 is
rather different than in the case where we equip Q with the standard Euclidean norm. Indeed, working in
(Z/NZ)× we have the integer representative 1/2 = (N + 1)/2, which is “halfway around the world”. For
these reasons, we have opted to make do with this cruder set of definitions which adhere to more standard
lattice considerations.
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So in our case, we obtain:

detC =
∏

0≤i<j≤M

(j − i), (B.9)

or, expanding out the product, we can instead write:

detC =
M∏

m=2

mM+1−m. (B.10)

We now observe that in this product, all the individual entries are non-zero modulo N . In

particular, this means that for N = p a prime, the product reduces modulo p to an element

of F×p , so an inverse does indeed exist. We can then invert the matrix C and extract the

appropriate finite differences.

But when N = pa, the same reasoning shows that the inverse of detC does not exist

in Z/NZ. Indeed, recall that (Z/NZ)×, the multiplicative group of integers modulo N is

specified by integers in the set {1, ..., N −1} which are relatively prime to N . In our product

formula for detC, we observe that every single integer between 1 and N − 1 appears in the

product, so unless N is prime, it will not have a well-defined inverse in
∣∣(Z/NZ)×

∣∣, and
so we cannot view C−1 as a matrix with entries in Z/NZ. Of course, we can compute the

inverse of C over Q, and then clear denominators, though this is also not without its own

difficulties. This provides a possible workaround to reconstructing all the Hasse derivatives,

but it illustrates that additional care is needed in such cases.

Similar considerations clearly apply if we work with N a more general positive integer.
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C Finite Fields

In this Appendix we briefly review some aspects of finite fields. We cannot hope to provide a

full review of this material, and so instead refer the interested reader to an abstract algebra

textbook for further details, for example [306,307].

To begin, we recall that in abstract algebra, a field K has both a commutative addition

and multiplication operations such that its elements form a group under addition, and after

deleting 0, the identity of the additive group law, the remaining elements K× form a multi-

plicative group with identity 1. Common examples include the rational numbers Q, the real

numbers R and the complex numbers C. More abstractly, one can consider fields such as

Q(t), R(t), C(t), with elements given by ratios of polynomials in a formal variable t. All of

these examples have an infinite number of elements and specify characteristic zero fields.

One can also construct finite fields by observing that Z/pZ, the integers modulo p a prime

number also satisfies all the requirements to be an algebraic field. This field is denoted as Fp.

We will shortly introduce additional finite fields Fq with q = pn. The most important feature

of all these fields is that they have characteristic p, meaning p = 0 in the field. Another

important consequence for any characteristic p field is that we have the “Freshman’s dream”

equation:

(x+ y)p = xp + yp (C.1)

This follows from expanding out the polynomial and observing that all but two coefficients

are equal to zero modulo p. We also have “Fermat’s little theorem” which tells us that for

m ∈ Z:
mp ≡ m mod p, (C.2)

The Frobenius map is defined by taking elements of a ring R (and thus also a field) and

multiplying p times:

F : R→ R (C.3)

r 7→ rp. (C.4)

Note that for the field Fp, all elements are fixed under this map. Consequently, we can speak

of the Frobenius field endomorphism (namely one which respects addition and multiplication

of the field):

F : Fp → Fp. (C.5)

We now introduce the finite fields Fq. In the spirit of Galois theory, we look for the roots

of irreducible polynomials over a field K. Adjoining these solutions to our original field, we

obtain a field extension L, which we can view as a vector space with coefficients in K. For

example, C = R(i) where i2 + 1 = 0.
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Given an irreducible degree n polynomial Pn(t) in the ring Fp[t], solving the equation:

Pn(t) = 0 (C.6)

will produce a field extension of Fp when n > 1. Indeed, the condition that Pn(t) is irreducible

means that we can build a bigger field by adjoining the roots of Pn(t) to Fp. Denoting one

such root by α so that Pn(α) = 0, observe that F (α) = αp is also a root, since:

Pn(α
p) = (Pn(α))

p = 0, (C.7)

where we used the Freshman’s dream. Note also that only elements of Fp are fixed under

Frobenius conjugation, so F (α) is distinct from α. Indeed, it turns out the Frobenius map

generates the Galois group Gal (Fp(α)/Fp) ≃ Z/nZ, the cyclic group with n elements. Viewed

as a vector space, we can treat elements of this new field as n-component vectors. But since

each component has p possible entries, the total number of possible entries is pn. This is the

number of elements in the finite field Fq with q = pn. We can again ask how the Frobenius

endomorphism acts on this field. In this case, it turns out that only elements of Fp remain

invariant. It is convenient to work in terms of a basis spanned by the images of our root α

under the Frobenius map, so we can write a general element y ∈ Fq as:
102

y = y0α + y1α
p + ...+ yn−1F

n−1(α), (C.8)

where the yj ∈ Fp for j = 0, ..., n− 1. Observe that any element of this bigger field satisfies

the equation:

yq = y, (C.9)

which follows from the fact that F has order n on Fq.

Continuing in this way, we can construct field extensions of Fq as well. We denote by Fp

the algebraic closure of Fp. We note that this field also has characteristic p, but it clearly has

an infinite number of elements. In this case, the Frobenius automorphism also has infinite

order. One can also construct infinite order fields in characteristic p such as Fp(t), or more

generally, the field of functions for a variety.

One feature we have used in our analysis is that we can work with V a dimension n vector

space over Fp and interpret the action of a “dot product” in terms of an algebraic operation

on Fq. To see how this works in detail, fix a choice of a non-degenerate symmetric bilinear

102More generally, we can invoke the normal basis theorem of Galois theory, which asserts that for a Galois
extension L/K, there exists an element β ∈ L such that {g(β)|g ∈ Gal(L/K)} forms a basis of L when viewed
as a vector space over K. To give a perhaps more familiar example, consider C = R(

√
−1) as a quadratic

extension of R, where the Galois group acts by
√
−1 7→ −

√
−1. Then, the β in question is β = 1 +

√
−1,

since its conjugate is 1−
√
−1. Observe also that in contrast to the characteristic p case one cannot simply

take β to be
√
−1, since that would not span the vector space.
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form:103

B : V × V → Fp (C.10)

(v, w) 7→ Bijviwj. (C.11)

Note that for any element y ∈ Fq, we have an expansion in terms of powers of α as well as

its Frobenius conjugates:

y = y0α + y1α
p + ...+ yn−1F

n−1(α) (C.12)

F (y) = yn−1α + y0α
p + ...+ yn−2F

n−1(α) (C.13)

... (C.14)

F n−1 (y) = y1α + y2α
p + ...+ y0F

n−1(α), (C.15)

so by linear algebra on Fq, we can invert this relation to write:

yi =MijF
j(y), (C.16)

for a matrix Mij determined only by α. Now we can rewrite our “dot product” as a pairing:

B : Fq × Fq → Fp (C.17)

(v, w) 7→ BijMii′F
i′(v)Mjj′F

j′(w), (C.18)

where we have abused notation in treating v and w as elements of Fq.

103Here we are not using the physicist convention for upper and lower indices. We do this to avoid confusion
with raising a given element to some power.
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D Geometry in Characteristic p

In this Appendix we briefly discuss some aspects of geometry in characteristic p. We refer

the interested reader to standard texts in algebraic geometry such as [106] for further details.

Our discussion will also follow the lectures [308].

To set the stage, we recall that in algebraic geometry, we first specify a commutative ring

R, and then build up an affine patch of the geometry from SpecR, the set of all prime ideals

in R.104 To illustrate, the affine complex line A1 can be thought of as SpecC[x]. Indeed, the
prime ideals of C[x] are generated by polynomials of the form (x − c) for c ∈ C. Each of

these values of c specifies a point on our affine line. As a somewhat less intuitive example,

one can even consider SpecZ which consists of the ideals generated by the prime integers,

as well as the element 0.

There is also a notion of localizing at at a given element of SpecR. Given a prime ideal

p, we define Rp by first constructing the complement pc = R\p. Then, we are free to take

inverses of pc inside R, building a new ring:

Rp = (pc)−1R. (D.1)

One can think of this as allowing us to build fractions from objects inside R.

We are now ready to construct the cotangent space. Our discussion follows the notes

of reference [308]. Given a prime ideal p ⊂R, we get a point [p] ∈ SpecR. We can then

construct Rp, the localization of the ring at this point. This new ring has a maximal prime

ideal pRp = m. Observe that [pRp] is a point of SpecRp. From this data, we can construct

the residue field:

k = Rp/m, (D.2)

as well as a vector space V = m/m2 over the field k. The vector space V is the Zariski

cotangent space at [p], and we write T ∗xX to denote the cotangent space of a scheme X at a

point x.

This notion of cotangent space is actually quite flexible. As a particularly counter-

intuitive example, we can consider SpecZ and calculate the derivative of integers at different

primes. For example, given 40 = 23 × 5, we see that it vanishes at both the point [2] and

the point [5]. Computing the derivatives at these two points yields:

d

d[2]
40 = 3× 22 × 5 = 0 mod 2 (D.3)

d

d[5]
40 = 23 = 3 mod 5. (D.4)

104Recall that an ideal I ⊂ R is defined by the properties that as an additive group, it is a subgroup of R,
and that for r ∈ R and m ∈ I, rm ∈ I. A prime ideal P is one for which if a, b ∈ R and ab ∈ P , then either
a or b is an element of P .
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Our discussion so far has focused on notions from “classical” algebraic geometry. This is

enough for us to start equipping our space with appropriate sheaves, and a notion of local

structure.

Even in characteristic p, there is a notion of a local analytic isomorphism as associated

with a diffeomorphism. These are known as étale morphisms [156]. There are several equiv-

alent ways to phrase this condition more precisely. We refer to a morphism of schemes

f : X → Y as étale if it satisfies the condition that f is flat,105 locally of finite presenta-

tion,106 and for every y ∈ Y , the fiber f−1(y) is the disjoint union of points, each of which

is the spectrum of a finite separable field extension of the residue field κ(y). We found the

entry [311] helpful in providing additional definitions.

Giving a full treatment would carry us to far afield from our main developments, but there

is one important “moral point” to emphasize. Perhaps the most important observation is

that in characteristic zero, the notion of an étale map matches up well with the condition of a

map being analytic. Closely following the discussion in [312], for a map ϕ : X → Y of locally

finite type C-schemes, the associated map of complex-analytic spaces ϕan : Xan → Y an is a

local isomorphism if and only if ϕ is étale. In characteristic p, the main issue is in specifying

the analog of the inverse function theorem.

More generally, we can speak of smooth morphisms of schemes f : X → Y . A morphism

f is smooth provided it is flat, finitely presented, and specified by the condition that for all

y ∈ Y , f−1(y) is a smooth scheme over the residue fields κ(y). One can also view smooth

morphisms f : X → Y as defined by the condition that locally, they factor through an étale

map X
g→ An

S → Y , where here An
S is affine n-space over a scheme S. In characteristic zero

differential geometry, the smooth morphisms specify smooth submersions.

Curves in Characteristic p

We now briefly discuss curves in characteristic p. As we already mentioned, one choice is to

just take Fq = A1, the affine line. This clearly has q distinct points. One can also consider

the affine line given by the zero set of the equation:

x+ y = 0 (D.5)

for x, y ∈ Fq. Again, this is an affine line and one can verify that this also has precisely

q points. More generally, we can consider cutting out a one-dimensional subspace from a

105Essentially quoting from [309], recall that an R-module M is called flat if whenever N1 → N2 → N3 is
an exact sequence of R-modules, the sequence M ⊗R N1 →M ⊗R N2 →M ⊗R N3 is also exact. A ring map
R→ S is called flat if S is flat as an R-module. Continuing in this way, we can specify a flat morphism by
its actions on the underlying defining rings.
106Namely, if we consider local neighborhoods U of X and V ⊃ f(U) of Y, then OX(U) is a finitely

generated OY (V )-algebra. For additional discussion see for example [310].
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hypersurface equation such as:

f(x, y) =
∑
i,j

fijx
iyj = 0, (D.6)

for f(x, y) ∈ Fq[x, y] a polynomial in two variables. Even more generally, we can add more

coordinates and consider additional intersections of hypersurfaces. Observe that as we do

this, the number of points in the ambient geometry, namely Fm
q also grows, becoming qm in

order. This illustrates that even in characteristic p, discretization need not mean that we

are stuck with just the affine line.

It is often easier to work with hypersurfaces in a projective space. For example, for a

curve in a projective space P2, we can write it as the zero set of the equation:{
f(x, y, z) =

∑
i,j,k

fijkx
iyjzk = 0

}
⊂ P2, (D.7)

where f(x, y, z) is a homogeneous polynomial in three variables.

The notion of a genus can be specified in much the same way as in characteristic zero.

Indeed, for a projective curve Σ we can introduce the canonical sheaf KΣ and then use the

Riemann-Roch theorem to calculate the genus:

h0(KΣ)− h1(KΣ) = 2g − 2. (D.8)

As a simple example, note that a plane curve of degree d has genus g = (d − 1)(d − 2)/2.

In most well-behaved situations with a polynomial with integer coefficients reduced modulo

p, this genus behaves just like its characteristic zero counterpart, though there are some

notable exceptions. As a pathological example, note that the equation y = xq + x = 2x for

x, y ∈ Fq.

One can also ask about the number of points in this curve. For a curve Σ defined over

Fq, there is also an important Hasse-Weil bound on the number of solutions (see e.g., [24]):

|#Σ(Fq)− (q + 1)| ≤ 2g
√
q. (D.9)
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E Grothendieck Topologies

In this Appendix we briefly review some aspects of Grothendieck topologies. We refer the

interested reader to [313] for further elaboration on the subject. For our purposes, the main

point of these notions is to provide a suitable generalization of covering spaces which can

produce a non-trivial cohomology theory, even in the discretized situation present in defining

varieties over finite fields. Essentially quoting from [313], one defines a topology or site T as

a category cat(T ) of a set of coverings cov(T ) defined as families of morphisms {Ui
φi→ U}i∈I

in cat(T ) such that the following three properties hold:

� (T1) For {Ui → U} in cov(T ) and a morphism V → U in cat(T ), all fiber products

Ui ×U V exist and {Ui ×U V → V } is again in cov(T ).

� (T2) Given {Ui → U} ∈cov(T ), and a family {Vij → Ui} ∈cov(T ) for all i ∈ I, the

family {Vij → U} obtained by composition of morphisms also belongs to cov(T ).

� (T3) If φ : U ′ → U is an isomorphism in cat(T ) then {U ′ φ→ U} ∈cov(T ).

Again, the point of these notions is to have a sense of open coverings as one has in

standard topology, but in which the emphasis is on the morphisms rather than the sets

themselves. Standard notions of presheaves and sheaves can be defined in this setting as

well. For example, letting C denote a category of products (which can include the case of

the category of abelian groups or the category of sets), and T a topology, we can define a

presheaf on T with values in C as a contravariant functor F : T → C. We can then speak

of a sheaf on T as defined by the condition that if for every covering {Ui → U} in T , the

following diagram is exact:

F (U)→
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj), (E.1)

namely the diagram of line (E.1) is an equalizer.107 In the above, Ui ×U Uj is the standard

fiber product as specified by the commutative diagram:

Ui ×U Uj Uj

Ui U

(E.2)

where the structure of the exact sequence of line (E.1) now follows since F is a contravariant

functor.

107Recall that for sets X and Y and maps f : X → Y and g : X → Y , the equalizer Eq(f, g) = {x ∈
X such that f(x) = g(x)}. One can extend this in the obvious way to any collection of maps from X to Y .
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The main usage of this formalism for us is in defining the various étale topologies. In

particular, given a scheme X, we can specify the category of étale X schemes, denoted by

Ét/X. The (small) étale site (i.e. topology) of X is denote by Xét, where cat(Xét) is just

Ét/X and the space of coverings cov(Xét) is the set of surjective families of morphisms in

Ét/X. One can also speak of a big étale site, but at the level of cohomology, these distinctions

are often not important, and we will not elaborate on this further.

The notion of a crystalline site also implicitly appears in our discussion. From [314], if X

is a scheme over a field k, then the crystalline site of X relative toWn, denoted Cris(X/Wn),

has as its objects pairs U → T consisting of a closed immersion of a Zariski open subset U

of X into some Wn-scheme T defined by a sheaf of ideals J , together with a divided power

structure on J compatible with the one on Wn.

Given a suitable notion of global sections for sheaves, we can construct the associated

cohomology theory via right-derived functors of the global sections. Given a sheaf F and

open cover {Ui → U}i∈I , we consider the left-exact functor F 7→ H0({Ui → U}i∈I , F ).
Then, the right-derived functor provides a definition of the higher degree cohomology groups:

Hj(U,F) = Rj(U,F) (see e.g., [313]). Using the sheaf property, we can then extend to X.

For our purposes, the utility of introducing the étale topology is that we also have the

Artin comparison theorem [315], which states, for an algebra A given for example by either

a finite field Fq, the p-adic ring of integers Zp, or the p-adic numbers Qp (and suitable

generalizations thereof) that:

H•(Xét, A) ≃ H•(X an, A), (E.3)

where X an refers to the analytification of X over C, i.e., we interpret our variety as defined

over C and then equip it with the standard topology of an analytic space.
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F Codes

In this Appendix we review some aspects of classical and quantum codes alluded to earlier.

For a review of linear and non-linear codes, see for example the thesis [316]. For a review

of algebraic geometry codes, see for example reference [317]. For a review of how quantum

codes can be obtained from algebraic codes, see reference [318]. Our plan will be to first

review some aspects of classical coding theory, and in particular the relation to algebraic

curves over finite fields. We then turn to quantum codes obtained from these classical codes.

As throughout, we let q denote a power of some prime p.

F.1 Classical Algebraic Codes

To set the stage, let us recall that the main idea in much of classical coding theory is to send

messages over a noisy channel. Our discussion will follow that given in reference [316]. More

precisely, one has in mind the following schematic diagram:

[Source]→ [Transmitter]︸ ︷︷ ︸
Input

→ [Receiver]→ [Sink]︸ ︷︷ ︸
Output

. (F.1)

The “source” and “sink” may consist of k different possible messages which are then encoded

in a larger set of n “codewords” for the transmitter and receiver.108 Denote by V the set of

input words and by C the set of possible codewords. A passed message will be denoted as

C(v) for v ∈ V .

The main idea is that by a suitable embedding of k possible messages in the codewords,

random errors in the transmission can be minimized. Of course, one way to proceed is to

encode all information in a string of 1’s and 0’s, but more generally, our basic alphabet may

consist of a q-ary code with q different possible letters, as for example would occur if we use

the finite field Fq. A code is then some collection of different codewords of length n.

Now, in passing a message from the transmitter to the receiver, there may be some noise,

i.e., errors may be generated. This amounts to flipping some of the entries in our codeword.

Much of the art of the subject revolves around finding efficient ways to protect messages so

that even when errors are present, the message can be decoded. Along these lines, We refer

to the redundancy of a code as n− k and the information rate of a code as:

R =
1

n
logq |C| . (F.2)

We can speak of the weight of a codeword as the number of entries which are different from

zero. Given a code C, we can also specify the distance d by computing the Hamming distance

of elements in the image set C(V ) as specified by taking an input word in V and encoding

108Clearly, here k refers to a positive integer rather than a field. We have begun to exhaust the limits of
the English alphabet.
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it in C:

d(C) = min
v ̸=v′
{distHam(C(v), C(v

′)) with v, v′ ∈ V } , (F.3)

where distHam is the “Hamming distance”, i.e., we view our words as elements of Fn
q with

respect to a fixed basis and count the number of entries over which the two vectors are

different. When the context is clear, we shall often just write C to denote the code space.

Specializing further, we can build a large set of codes by assuming the various words

and codes are built from vectors in vector spaces over Fq. In this case, the source is just

a k-dimensional vector space V ≃ Fk
q and the code space is an n-dimensional vector space

W ≃ Fn
q . We can speak of the embedding V → W as specifying a code C, i.e., it is just the

image set of V inside W . In this case, we can view errors as elements e ∈ W so that for a

codeword C(v) ∈ W , the error is just given by C(v) + e, i.e., it flips some of the entries.

Given a linear code C, we can also specify the distance d by computing the Hamming

distance of elements in the image set C(V ), just as we did in line (F.3). Note that d(C) does

not depend on this choice of basis since we always minimize over all vectors in the image

anyway. We refer to a linear [n, k, d]q code where d(C) = d is the minimum distance of the

code. In this case, the information rate is just R = k/n.

One can also introduce a notion of non-linear codes. Treating each codeword as an

element of Fn
q with respect to a fixed basis, we can view this as defining a set Cnl ⊂ Fn

q ,

where the subscript serves to remind us that this is not a vector space. We refer to the

kernel of this space as K(Cnl):

K(Cnl) = {v ∈ Cnl with λv + Cnl = Cnl for all λ ∈ Fq} , (F.4)

which is a vector space. The rest of the codewords can then be obtained by adding appro-

priate vectors, i.e., by suitable affine transformations:

Cnl =
t⋃

i=1

(K(Cnl) + vi) , (F.5)

that is, we introduce t coset vectors v1, ..., vt to build the rest of the codewords.

Algebraic varieties over finite fields provide a way to build examples of codes, a topic we

now review following [317]. Intriguingly, the additional geometric structure present in this

class of examples often provide a way to build “good” examples in the sense that certain

information theoretic quantities can be handled analytically. We cannot hope to provide a full

characterization of the subject, but we can at least explain how these geometric ingredients

emerge.

To keep things as concrete as possible, we fix X a smooth, projective irreducible curve of

genus g over the finite field Fq. We begin by introducing two sets of points which we write

as P1, ..., Pn and Q1, ..., Qm. From these, we can form the divisors D = P1 + ... + Pn and

G = Q1 + ...+Qm. We can then introduce the Riemann-Roch vector space associated with
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this divisor:

L(G) = {f ∈ Fq(X) such that (f) +G ≥ 0} ∪ {0} . (F.6)

At this point, it is helpful to recall that for a plane curve in P2 defined by the equation

h(x, y, z) = 0 with x, y, z homogeneous coordinates, the space of functions is given by ratios

of the form p(x, y, z)/q(x, y, z) where h does not divide either p or q. This property ensures

that L(G) is finite dimensional.

We note that L(G) is also just the space of global sections for a line bundle, and in this

case it is customary to denote it as H0(X,OX(G)). This defines a vector space which we

denote by ℓ(G) = k. We can introduce a basis which we write as {fa} for a = 1, .., k. Given

these functions, we can produce a code by evaluating at all n points of D:

evD : L(G)→ Fn
q (F.7)

f 7→ (f(P1), ..., f(Pn)). (F.8)

Doing so, we get an n × k matrix as specified by fa(Pi) where a = 1, ..., k and i = 1, ..., n.

The resulting code is often denoted as CL(D,G). We note that if degG < n, then this

specifies an [n, k, d]q linear code with n set by the number of evaluation points, k = l(G) the

dimension of the linear system, and d = n−degG the minimal distance between codewords.

In the literature on algebraic geometry codes, it is also customary to discuss the space of

meromorphic one forms:

Ω(G−D) = {ω ∈ Ω(X) such that (ω) ≥ G−D} ∪ {0} . (F.9)

In this case, one specifies a code by computing the residues of ω at the marked points. In

other words, the evaluation map in this case is given by:

evD : Ω(G−D)→ Fn
q (F.10)

ω 7→ (resP1ω, ..., resPnω), (F.11)

and the corresponding linear code is denoted by CΩ(D,G). Let us note that there is a duality

between the codes CL(D,G) and CΩ(D,G) which is often written as:

CL(D,G) = CΩ(D,G)
⊥, (F.12)

where we have implicitly used a notion of orthogonality as induced by introducing a pairing

on Fn
q given by:

Fn
q × Fn

q → Fq (F.13)

(a, b) 7→ a · b =
n∑

i=1

aibi, (F.14)
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and for a vector space V ⊂ Fn
q , we define

V ⊥ =
{
w ∈ Fn

q such that w · v = 0 for all v ∈ V
}
. (F.15)

Now we can see why equation (F.12) is true; We can consider any f ∈ L(G) and any

ω ∈ Ω(G). The dot product between the two is, in the obvious abuse of notation:

(f, ω) =
n∑

i=1

f (Pi) resPi
ω =

n∑
i=1

resPi
fω = 0, (F.16)

where the last equality follows from the fact that we are summing over all the residues of a

compact curve.

Though we will not be too concerned with “practical applications,” some important

properties of algebraic codes include the fact that infinite families of codes [ni, ki, di]q can

be constructed such that the information rate Ri = ki/ni and relative distance δi = di/ni

remain finite and non-zero as i→∞.

The above considerations can also be extended to produce a class of non-linear codes

which again have good asymptotic coding properties. Following [319] we next consider a

stable vector bundle E over the curve X. Stability is defined in essentially the same way

as in characteristic zero; we first change base to the algebraic closure Fq and then specify

the slope as µ(E) = deg(E)/rk(E), where deg(E) denotes the degree and rk(E) ≡ r the

rank of the vector bundle. We refer to a bundle as being stable if and only if, for every E ′

a subbundle of E, we have µ(E ′) < µ(E). Now, the important point for us is that for any

point x ∈ X, we can consider the stalk Ex which is just a copy of Fr
q ≃ FQ, with Q = qr. We

can then proceed much as we did in the line bundle case: we simply consider the evaluation

map at n different points of the global sections of E:

ev : H0(X,E)→
n⊕

i=1

EPi
≃ Fn

Q (F.17)

v 7→ (v(P1), ..., v(Pn)). (F.18)

Observe that this need not define an FQ linear code, but we do get an Fq-linear subspace of

Fn
Q. Note that if the evaluation map is injective, then the size of the code is K = qh

0(X,E),

the dimension of the non-linear code is k = logQK, and since our code space is Fq-linear, d

is just the minimal weight of a non-zero codeword.

Specifying codes is in some sense the “easier” part of the story. Indeed, the utility of a

given code also requires one to be able to efficiently decode a given signal, and there is again

a vast literature centered around how to do this. We will not dwell on this point since it is

beyond the scope of the present considerations.
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F.2 Quantum Error Correcting Codes

Let us now turn to the case of quantum error correcting codes generated from algebraic

codes. Our discussion follows reference [318]. To begin, we recall that a q-ary quantum code

of length n is specified as a dimension k complex subspace Q ⊂ (Cq)⊗n. We can adopt a basis

of states |u1, ..., un⟩, where each ui ∈ Fq specifies a single qudit register. We can introduce

a set of unitary operators Ei which serve to encode possible errors made in transmitting

information. There is then an orthogonal decomposition of (Cq)⊗n as:

(Cq)⊗n ≃
t⊕

i=0

EiQ, (F.19)

where E0 is the identity, and t = qn−k − 1.

Given a quantum code Q with basis |ψ1⟩ , ..., |ψk⟩, we have a notion of errors E and F

being “correctable” if they are distinguishable, namely if the following conditions are met:〈
ψi|E†F |ψj

〉
= 0 and

〈
ψi|E†F |ψi

〉
=
〈
ψj|E†F |ψj

〉
. (F.20)

for all i, j.

A basis of error operators can be specified as follows. Begin by considering the special

case where n = 1. Then, we note that for some m ≥ 1, we have q = pm and Fq is a vector

space over Fp. Introduce a, b, u ∈ Fq. Given a state |u⟩ ∈ Cq, we have the qudit operations:

Ta |u⟩ = |u+ a⟩ and Rb |u⟩ = ξTr(bu) |u⟩ , (F.21)

where ξ is a primitive pth root of unity. Here, we have again used the trace map Tr: Fq → Fp

to ensure that all phases have unit modulus. We can then define an “error operation”

Eab = TaRb, and the span of these operators constitute the set of errors on a single qudit.

Next consider the case n > 1. By abuse of notation we let a = (a1, ..., an), b = (b1, ..., bn)

and u = (u1, ..., un). Then, we can introduce error operators:

Eab = TaRb (F.22)

where:

Ta = Ta1 ⊗ ...⊗ Tan︸ ︷︷ ︸
n

and Rb = Rb1 ⊗ ...⊗Rbn︸ ︷︷ ︸
n

, (F.23)

and we have the error basis:

En =
{
Eab = TaRb with a, b ∈ Fn

q

}
, (F.24)
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and the error group:

Gn =
{
ξiEab with a, b ∈ Fn

q and 0 ≤ i ≤ q − 1
}
. (F.25)

We can also speak of the weight of an error ξiEab as the number of operations different

from the identity, i.e.:

wt(ξiEab) = n− |{i : ai = bi = 0}| , (F.26)

and thus, can speak of the minimum distance of a quantum code Q as the maximum weight

of error operations which can be corrected

d(Q) = max
|u⟩,|v⟩∈C
E∈Gn

{d such that ⟨u|v⟩ = 0 and wt(E) ≤ d− 1⇒ ⟨u|E|v⟩ = 0} . (F.27)

We can now refer to a quantum code of length n, dimension k and minimum distance d as

an [[n, k, d]]q code.

F.2.1 Stabilizer Codes and Algebraic Curves

Let us now specialize a bit further. Our aim will be to introduce quantum stabilizer codes

and how to construct them using algebraic curves over finite fields. For disussion of quantum

stabilizer codes, see reference [320].

The stabilizer of a given a subgroup of S ⊂ Gn, provides a possible quantum analog to

linear codes. We define a q-ary quantum stabilizer code C of length n as the joint eigenspace

of operators, i.e.:

Q = Stab(S) =
{
|u⟩ ∈ (Cq)⊗n with M |u⟩ = |u⟩ for all M ∈ S

}
. (F.28)

The interesting point for us is that algebraic curves over finite fields provide a natural

way to specify subgroups of S ⊂ Gn, and consequently, give us a way to build quantum

stabilizer codes. This is often referred to as the CSS construction, after references [113,114].

To begin, introduce a quadratic field extension Fq2 = Fq(ω) over Fq. We can take as

basis vectors ω and ωq ≡ ω and present elements of Fn
q2 as linear combinations ωa + ωb for

a, b ∈ Fn
q . Given this, we can perform the following composition of maps:

Fn
q2

f→ F2n
q

g→ Gn (F.29)

ωa+ ωb 7→ (a; b) 7→ Eab. (F.30)

So, given a suitable linear code subspace C ⊂ F2n
q , the image space g(C) gives a collection of

error correction operations. The stabilizer Q = Stab(g(C)) then defines a quantum stabilizer

code.
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To make use of this in explicit constructions, we can introduce a notion of an orthogonal

dual, as specified by making a choice of bilinear pairing. Two canonical options are a

symplectic pairing and a Hermitian pairing. For the symplectic pairing, we use Fn
q2 ≃ F2n

q

and assume u = ωa+ ωb and v = ωa′ + ωb′. Then, we can specify the product as:

(ωa+ ωb) ∗s (ωa′ + ωb′) = Tr

(
n∑

i=1

aib
′
i − bia′i

)
. (F.31)

Given u, v ∈ Fn
q2 , we denote the Hermitian pairing as the Fq valued expression:

u ∗h v =
n∑

i=1

uiv
q
i =

n∑
i=1

uivi. (F.32)

Observe that orthogonality in the Hermitian pairing implies orthogonality with respect to

the symplectic pairing.

Given a vector space C ⊂ F2n
q , we can then consider, for each choice of pairing, the space

of vectors which are “orthogonal” to C with respect to the symplectic pairing as:

C(s) =
{
v ∈ F2n

q such that v ∗s c = 0 for all c ∈ C
}

(F.33)

Given a vector space C ⊂ Fn
q2 , we can reference the space of vectors which are “orthogonal”

to C with respect to the Hermitian pairing as:

C(h) =
{
v ∈ Fn

q2 such that v ∗h c = 0 for all c ∈ C
}
. (F.34)

An important general result due to reference [115] is that with q = pm and for C ⊂ F2n
q

an Fp-linear code of order p
r which is self-orthogonal with respect to the ∗s product, namely

C ⊂ C(s), then any eigenspace of the CSS map g(C) is a [[n, n− r
m
, d(C(s)\C)]]q code. Note

that we implicitly have r/m an integer, and in many applications one makes the further

assumption that C is an Fq-linear code, defining a vector space of dimension k = r/m.

There are various immediate corollaries of this result. For example, we can now specify

two linear codes C1 and C2 of length n and respective dimensions k1 and k2 with C1 ⊂ C2.

Then, using the standard dot product of line (F.14), we construct the dual space C⊥2 . We can

then produce a subspace C = ωC1 + ωC⊥2 ⊂ Fn
q2 . Observe that f(C) = D is self-orthogonal,

with f : Fn
q2 → F2n

q defined in line (F.29). This can be used to prove that the eigenspace

of g(D) is in fact a quantum stabilizer code, and implicitly specifies an [[n, k, d]]q code with

k = k2 − k1 and d = min{d(C2\C1), d(C
⊥
1 \C2)}.

We can obtain a similar set of assertions using the Hermitian pairing and a classical q2-ary

linear code [n, k, d]q2 , where we assume that the associated vector space C is self-orthogonal

with respect to the Hermitian pairing. Denoting this orthogonal space by C(h), the resulting

quantum code constructed from this data is an [n, n− 2k,min{wt(C(h)\C)}]]q code.
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Having seen how to build quantum stabilizer codes from classical codes, we next observe

that classical algebraic codes provide a way to generate many examples of such quantum

stabilizer codes. Additionally, some of the conditions implcitly used, such as the condition

that we find two linear codes C1 and C2 such that C1 ⊂ C2 simply amount to specifying

line bundles in the appropriate fashion. For example, using the fact that for divisors A ≤ B

(namely B−A is effective) we observe that the line bundles satisfy L(A) ⊂ L(B), and so we

also have CL(D,A) ⊂ CL(D,B) for the corresponding linear codes, where D = P1 + ...+ Pn

is the divisor given by our “evaluation points”.

Summarizing, we have discussed a few ways to generate quantum stabilizer codes. In fact,

the interesting feature of these examples is that we also establish the existence of families of

quantum codes, since we already have families of classical linear codes.
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G Partition Function for a Free Field

In this Appendix we study the partition function for a free field defined on the punctured

affine line A×. Our Lagrangian is given by:

L[ϕ] = κDuϕDuϕ, (G.1)

and our task will be to evaluate the corresponding path integral:

Z
[
A×
]
≡
∑
ϕ

exp

(
2πi

p
S[ϕ]

)
. (G.2)

We comment here that when we turn to fermionic and supersymmetric systems, we introduce

a separate notion of a partition function as associated with the Hasse-Weil Zeta function.

The interpretation of the two is somewhat different, but the context should also make clear

quantity we are considering.

Now, to carry out the evaluation of the path integral, we make use of the mode expansion:

ϕ(u) =
∑
m

ϕmu
m ∈ Fp[u, u

−1] ⊂ Fp[[u, u
−1]], (G.3)

and we observe that the um are eigenfunctions of the differential operator D2
u with eigenve-

nalues m2. So, we get the momentum space expression:

S[ϕ] =
∑
m,n

− κmnδ̂m+nϕmϕn, (G.4)

where δ̂m+n is the modified delta function which only enforces m + n = 0mod (p − 1).

Compared with the characteristic zero answer, we see the same subtlety encountered in our

evaluation of correlation functions: we have to contend with the “winding modes” present

in the characteristic p setting since the delta function only enforces a milder version of

momentum conservation.

Proceeding much as in section 8, we introduce (see equation (8.18)):

ϕα
m modes: m ∈ {1, ..., p− 1} and α ∈ Z, (G.5)

as well as vectors µα
m with:

µα
m = (m− α), (G.6)

which we write as −→µ m, namely a vector in the α index. Then, the action is given by:

S[ϕ] =

p−1∑
m=1

− κ
(−→µ m ·

−→
ϕ m

)
(−→µ −m ·

−→
ϕ −m), (G.7)
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in the obvious notation. Here, we permit the same abuse of notation to allow the index

“−m” to go out of range.

Recall that in our analysis of correlation functions we first isolated the contributions from

the zero modes. Here, we must perform a similar analysis, and consequently need to also

split up our analysis according to whether −→µ m · −→µ m ̸= 0 or −→µ m · −→µ m = 0. Returning to our

discussion in section 8, we have the expansion:

−→
ϕ m = am

−→ν (0)
m +

∑
l ̸=0

a(l)m
−→ν (l)

m , (G.8)

in which:
−→µ m ·

−→
ϕ m = am. (G.9)

The range of values for am are the p distinct values in the finite field Fp. These are the

propagating degrees of freedom in the model. Moreover, when −→µ m · −→µ m ̸= 0 we can also set
−→ν (0)

m = −→µ m. Our expression for the action is therefore given by:

S[ϕ] =

p−1∑
m=1

− κama−m
(−→ν (0)

m · −→ν (0)
m

)
(−→ν (0)
−m · −→ν

(0)
−m). (G.10)

To proceed further, observe that in our path integral, we wish to sum over all possible

values of am. Consider fixing a value of am. Then, there exists a unique bm ∈ Fp such that

bm = am(
−→ν (0)

m · −→ν (0)
m ), and so instead of summing over am, it is enough to sum over bm.

With this in place, we can now proceed to the evaluation of the path integral sum. Precisely

because the path integral splits up as a sum over the different
−→
ϕ m modes, we get:

Z
[
A×
]
=
∑
−→
ϕm

exp

(
2πi

p

p−1∑
m=1

− κ
(−→µ m ·

−→
ϕ m

)
(−→µ −m ·

−→
ϕ −m)

)
(G.11)

= |Fp|σ ×
∑
a1∈Fp

...
∑

ap−1∈Fp

exp

(
2πi

p

(
p−2∑
m=1

− κamap−1−m

)
− 2πi

p
κa2p−1

)
, (G.12)

where the prefactor |Fp|σ is the contribution from the zero modes. This is formally infinite,

but serves to remind us that most of the path integral sums are trivial. Here, we have also

used the identity ap−1−m = a−m for m = 1, ..., p− 2 and a−(p−1) = ap−1.

We can also further simplify the sum over amap−m. Indeed, we have:

p−1∑
m=1

amap−m = a2p−1 +

p−2∑
m=1

((
am + ap−m

2

)2

−
(
am − ap−m

2

)2
)
. (G.13)
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We can re-index these variables to produce a new basis to sum over:

ck =
ak + ap−k

2
for k = 1, ...,

p− 1

2
(G.14)

dk =
ak − ap−k

2
for k = 1, ...,

p− 1

2
, (G.15)

so that our path integral sum becomes:

Z
[
A×
]
= |Fp|σ×

∑
ap−1∈Fp

∑
c1∈Fp

...
∑

c p−1
2
∈Fp

∑
d1∈Fp

...
∑

d p−1
2
∈Fp

exp

2πi

p
− κa2p−1

(p−1)/2∑
k=1

− κ
(
c2k − d2k

) .

(G.16)

At this point we recognize that each sum over a ap−1, ck and dk is producing a standard

quadratic Gaussian sum:

g(κ; p) =

p−1∑
n=0

exp

(
2πi

p
κn2

)
. (G.17)

We have the well-known relation for κ not divisible by p ̸= 2:

g(κ; p) =

(
κ

p

)
g(1; p), (G.18)

where
(

κ
p

)
is the Legendre symbol.109 Moreover, we have:

g(1; p) =

{ √
p if p = 1mod 4

−i√p if p = 3mod 4

}
. (G.19)

Putting everything together, we conclude that our partition function is simply a formal

product over quadratic Gaussian sums. Indeed, returning to equation (G.16) we can now

write:

Z
[
A×
]
= |Fp|σ × g(−κ; p)× (g(κ; p)g(−κ; p))(p−1)2 , (G.20)

or:

Z
[
A×
]
= |Fp|σ ×

(
1

p

)(p−1)/2(−1
p

)(p+1)/2

(g(1; p))p . (G.21)

Let us comment that generalizing to the contribution with a background source term

follows in a similar manner. Indeed, returning to our discussion in section 8, we simply need

109Recall that the Legendre symbol
(

κ
p

)
is, for p an odd prime and κ non-zero mod p, given by 1 if κ is a

quadratic residue mod p and −1 if κ is not a quadratic residue mod p. The Legendre symbol
(

κ
p

)
is zero if

κ vanishes mod p. Here, “quadratic residue” simply means there exists an x such that x2 = κ mod p.
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to add in the contribution from the vev of OJ :

OJ = exp

(
2πi

p

p−1∑
m=1

−→
J m ·

−→
ϕ m

)
. (G.22)

In the obvious notation, we have:

Z
[
A×, J

]
= Z

[
A×
]
× ⟨OJ⟩ , (G.23)

where, ⟨OJ⟩ is given in equations (8.41) and (8.42)).
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H Alternative Action on A×

In the main body of this paper we have presented a proposal for constructing and evaluating

actions. The main idea in this approach is to view the field configurations as rational

morphisms ϕ : X 99K Y between characteristic p varieties, and to use an explicit evaluation

map to sum over the geometric points of the “support spacetime X”. For example, the

action of a free Gaussian field on the punctured affine line A× can be written as:

S[ϕ] =
∑
x∈A×

evu=xκDuϕDuϕ, (H.1)

for ϕ ∈ Fp[u, u
−1] and Du = u∂u. Now, in our discussion of section 8 we also saw that

there is also a mode expansion available which parallels the mode expansions encountered

in characteristic zero. One of the distinct features of working in characteristic p, however, is

that the resulting action only led to a milder form of orthogonality. Indeed, evaluating on a

finite point set, we found that there are many additional contributions since xm+p = xm. It

is therefore natural to ask whether one could “do better” by using a different technique for

constructing actions.

At least in specialized situations such as A×, there is indeed a natural generalization

availalable which hews more closely to the characteristic zero treatment. The reason we

have not adopted this perspective throughout is that it is not clear to us that it naturally

extends to geometries such as the affine line, or more general genus g curves. We return to

this point after first providing additional details on this “alternative treatment”.

The alternative method for proceeding is to simply introduce a map on OA× = Fp[u, u
−1]

given by evaluation on the degree zero terms:

η : OA× → Fp (H.2)∑
ϕmu

m 7→ ϕ0. (H.3)

Observe that in evaluating on the kinetic term DuϕDuϕ as well as various interaction terms,

this returns:

η (DuϕDuϕ) =
∑
m

−m2ϕ−mϕm (H.4)

η
(
ϕ4
)
=

∑
m+n+r+s=0

ϕmϕnϕrϕs. (H.5)

All of this closely parallels the characteristic zero case, and the notion of conservation of

momentum also carries over as well.

Why then, have we not adopted this treatment in the main body of this paper? There

are at least a few difficulties which make it difficult to generalize this construction to other
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settings. Let us now enumerate some of these difficulties.

First, there is the issue of how to define the analog of η : OA× → Fp for more general

varieties X. One can already see the issue in comparing the coordinate ring for the affine

line OA1 = Fp[u], with that of OA× = Fp[u, u
−1]. On Fp[u], restricting to degree zero terms is

extremely restrictive, and would not lead to a particularly natural notion of a kinetic term or

interaction term. One might attempt to instead consider a canonical pairing (via a suitable

application of Serre duality) to construct a pairing OA1 × OA1 → Fp in which only terms

of the same degree are kept. But this is also a bit awkward, especially when one turns to

general interaction terms, where a pairing is not always available.

Second, there is the question of whether the characteristic zero intuition should just

be carried over completely from the start. We have remarked many times that one of the

intriguing features of characteristic p geometry is the fact that xp = x for x ∈ Fp. In

particular, we have argued that this implicitly imposes important truncations on physically

distinct configurations, serving as a generalized cutoff on the UV degrees of freedom in

our system. Attempting to implement a map such as η : OA× → Fp goes counter to this

philosopy, since it treats each mode number as wholly independent, rather than correlated.

Finally, there is the issue as to how we should generalize this to other geometries. At

least when we evaluate on geometric points of X, there is a notion of explicitly returning an

element of Fp. In the broader setting where we need to match up explicit “Fourier modes”,

one faces the related question as to whether one has secretly made use of a preferred basis of

functions. This is not much of an issue in “simple” geometries, but it is worth remembering

that at least in characteristic zero, the choice of preferred mode expansion basis can be quite

sensitive to the local geometry.

All that being said, it would of course be interesting to study further actions constructed

in this way, though as we have already mentioned, it is unclear to us that it fruitfully

generalizes.
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I Inverse Limits

In this Appendix we briefly review the notion of an “inverse limit”. This material can be

found in standard abstract algebra textbooks, including for example [307, 321]. As we are

mathematical dilettantes, we will content ourselves to closely follow reference [322].

We begin with a collection of groups Ai indexed by i ∈ I such that there is a directed

ordering ≤ on the partially ordered set I. For our purposes, we can typically take this to

just be the natural numbers N. For i ≤ j, introducing “bonding maps” given by group

homomorphisms:

fij : Aj → Ai (I.1)

where we demand that fii is just the identity and fij ◦ fjk = fik with i ≤ j ≤ k. This

collection of data defines an inverse system. This readily generalizes to other algebraic /

topological structures.

To construct an inverse limit, we consider the direct product over all the Ai as well as

sequences:
−→a ∈

∏
i∈I

Ai. (I.2)

We denote by ai the component of the vector in Ai. The inverse limit for this system is

then specified by the condition that these components of the vector are compatible with the

bonding maps, i.e., we have ai = fij(aj). The resulting set of sequences are the elements of

the inverse limit:

lim
←−
i∈I

Ai ≡

{
−→a ∈

∏
i∈I

Ai such that ai = fij(aj)

}
. (I.3)

The same sort of construction holds for more general sorts of maps, including ring and field

homomorphisms. Since it is often clear from the context, we often leave the indexing set

implicit, as we have done in the main body of the text.

An important example of an inverse limit includes the construction of Zp, the p-adic

ring of integers from the rings Z/pnZ. In this construction, one takes a sequence of integers

(m1,m2..., ) = {mi}i∈I such that mi = mj mod pi for i < j. This can also be equipped with

the product topology, with open sets given by cylinder sets.110

Let us also remark that the inverse limit also extends categorically, i.e., we have lim
←

n =

Rnlim
←

, where Rn denotes the nth right-derived functor on a category with a notion of lim
←

.

110The cylinder sets are defined as follows. Begin with a Cartesian product as indexed by some set S:

X =
∏
s∈S

Ys (I.4)

and consider the projections:
πs : X → Ys (I.5)

. A cylinder set in X consists of intersections of the pre-images of these projections.
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J The Étale Fundamental Group

In this Appendix we briefly review some aspects of the étale fundamental group of a scheme

X. Some of what we describe is reviewed in [323] as well as the notes [324]. For a general-

ization to higher homotopy groups, see, e.g., Appendix E of reference [128].

We first introduce a scheme X and fix a geometric point x, which in the topological case

we would view as the base point for our loops. The definition of πét
1 (X, x) follows from taking

an inverse limit of Galois covers Xi → X, i.e., we first consider finite étale schemes Xi → X,

along with a projective system {Xi → Xj|i < j ∈ I} for some ordered indexing set I. Then,

we build the étale fundamental group as the inverse limit:

πét
1 (X, x) = lim←−

i∈I
AutX(Xi). (J.1)

One can visualize this as the group of deck transformations on a covering space. The reason

we need to introduce an inverse limit is that the notion of a “universal cover” may not be

available in the more general setting. What this means in practice is that when the standard

fundamental group of a topological space exists, the étale fundamental group is a profinite

completion of the standard fundamental group.111

To illustrate the general idea, consider the case where the scheme X is just SpecK, with

K a field. Geometrically, this describes a single point (since a field has a single geometric

point), so even though “topologically” we might view this as having a trivial fundamental

group, its loop space is still quite non-trivial. Indeed, in this case, our Galois covers really

are just Galois extensions of K, and the inverse limit is obtained from a separable algebraic

closure of K, which we denote by K. Then, we can write:

πét
1 (SpecK, x) = Gal(K/K), (J.3)

namely the absolute Galois group of K. To be more concrete, we can also specialize to the

case of K = Fq. Then, the étale fundamental group is:

πét
1 (SpecFq, x) = Gal(Fq/Fq) ≃ Ẑ, (J.4)

namely the profinite completion of the integers, i.e., the profinite completion of the funda-

111Recall that a profinite completion of a group G is specified by first considering the inverse system built
from all quotients G/N with N a normal subgroup of G of finite index. These quotients form an inverse
system because the normal subgroups form a partial ordering under inclusion. Then, the profinite completion
is defined by:

Ĝ ≡ lim
←

G/N. (J.2)

For example, Ẑ, the group of profinite integers, is obtained from the inverse limit on Z/nZ for n ∈ N, where
the partial ordering (and thus inclusion) proceeds via the embedding Z/nZ→ Z/mZ for m|n. We comment

that Ẑ is the absolute Galois group for any finite field.

227



mental group of a topological circle, namely an S1. The generator of this group is just the qth

Frobenius map t 7→ tq. Continuing the analogy further, once can view Fp as specifying a cir-

cle in SpecZ, which is then interpreted as an arithmetic analog of a topological three-sphere,

namely an S3 (see e.g. [325,91]).

Similar considerations hold for the projective line P1(K), since in this case the functions

of a local system are captured by rational functions of polynomials. In this case, we have

πét
1 (P1(K), x) = Gal(K(t)/K(t)) ≃ Gal(K/K). (J.5)

In particular, in the case where we specialize to K = Fq, we get:

πét
1 (P1(Fq), x) ≃ Ẑ, (J.6)

so it is sensible to view this as specifying a notion of “winding numbers” in the characteristic

p setting.

In the case of the affine line A1(K), the computation of the étale fundamental group

is somewhat more complicated because there are now far more non-trivial étale coverings

available. For a recent account of some of the issues involved, see for example reference [326].
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K Some Zeta Functions

In this Appendix we collect a few examples of Zeta functions. To begin, we fix our ground

field to be Fq, and assume (as usual) that q is odd for simplicity. As a first example,

consider the variety An, i.e., affine n-dimensional space. Counting points in this setting is

straightforward, and we get:

ZAn,q(z) =
1

1− qnz
. (K.1)

The case of projective n-dimensional space is similar, and gives:

ZPn,q(z) =
1

(1− z)(1− qz)...(1− qnz)
. (K.2)

As a somewhat more involved example discussed in reference [151], we next consider the

elliptic curve E defined as a zero set in P2:112

Y 2Z = X3 +XZ2, (K.3)

in the obvious notation. The Zeta function in this case is:

ZE,q(z) =
1− az + qz2

(1− z)(1− qz)
= (1− az + qz2)ZP1,q(z), (K.4)

where the number a is implicitly fixed by the relation:

#(E) = −a+ 1 + q, (K.5)

where #(E) is the number of points in E defined over Fq. Note also that the denominator

is the same as that of ZP1,q(z). An additional remark here is that for this curve, the rigid

cohomology group is [151,152]:

H1
rig(E) ≃ Qq

dx

y
⊕Qqx

dx

y
, (K.6)

where Qq with q = pn denotes the degree n unramified extension over the p-adics Qp, i.e.,

we have Gal(Qq/Qp) ≃ Gal(Fq/Fp) ≃ Z/nZ.113

One can also consider the affine case, i.e., by setting Z = 1 in equation (K.3) and

excluding y = 0. This yields [151]:

ZEaff ,q(z) = ZE,q(z)(1− z)2(1− z2), if q ≡ −1mod 4 (K.7)

ZEaff ,q(z) = ZE,q(z)(1− z)4, if q ≡ +1mod 4. (K.8)

112There is an unfortunate clash of notation between the projective coordinate and the Zeta function. It
should be clear from the context which is meant.
113See Appendix O for a brief review of Qp and Qq.
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L Real and Complex Spacetime Twistors

In this Appendix we review some aspects of the geometry of real and complex twistors

[327, 328], and their use in the study of Lorentzian signature spacetimes. Twistor methods

are helpful in addressing a number of Euclidean signature issues, for example, in generating

self-dual solutions to Yang-Mills theory [329].114 Our emphasis here will be on the usage of

physical twistors in characterizing the conformal structure of spacetime. By recasting this

as a problem in algebraic geometry, we can then consider varying the ground field.115

The main idea in this approach is to emphasize the conformal structure of a spacetime.

We denote by RM four-dimensional Minkowski space, and CM its complexification. The

conformal compactification of each space is denoted by RM# and CM#. The space CM# is

characterized by a quadric in CP5. To see how this comes about, introduce six independent

homogeneous coordinates for CP5 which we label as Rαβ where α, β = 1, ..., 4 and Rαβ =

−Rβα. Raising of the indices is accomplished via the ε tensor:

1

2
εαβγδR

αβ = Rγδ. (L.1)

The quadric corresponding to CM# is then:

1

2
εαβγδR

αβRγδ = RγδR
γδ = 0. (L.2)

The important point for us is that this discussion makes no reference to an explitic metric.

A real slice of this quadric defines RM# via the coordinate substitution:116

R12 =
1

2
(V +W ), R13 =

1√
2
(Y − iX), R14 =

i√
2
(T + Z) (L.3)

R23 =
i√
2
(Z − T ), R24 =

1√
2
(Y + iX), R34 = V −W (L.4)

where the variables T , V , W , X, Y and Z are real coordinates of R2,4. In terms of these

114A curiosity of twistors is that physics in Kleinian signature (+,+,−,−) is “better-behaved” than one
might initially suspect. For example, many analytic aspects of scattering amplitudes and supersymmetric
structures persist and have novel properties in this setting, see e.g., references [138, 330, 137, 331, 332] and
references therein for discussion on various aspects of these applications.
115The following references provide some additional context and details [134–136, 333]. Some notions of

p-adic twistor space have been discussed for example in reference [334]. Here, we are considering what
happens to physical twistors when varying the ground field. The point of view in [334] is more in line with
its application to questions in Euclidean signature systems where one is often interested in tracking the local
variation of families of complex structures. There is then an analogous variational problem one can formulate
p-adically. Our interest and point of view is somewhat different.
116In the context of working over a finite field, the appearance of

√
2 and i is potentially in poor taste. We

can, of course, absorb these factors into the definitions of the coordinates. Observe that in Fp there is no
such issue, though the interpretation is of course somewhat different in characteristic p.
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coordinates, equation (L.2) becomes:

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0. (L.5)

The spacetime RM# has topology S1 × S3, which is the same as the Euclidean signature

Einstein Universe.

Deleting an appropriate subspace from RM# yields de Sitter space (dS), Anti de Sitter

space (AdS) and Minkowski space via the restrictions:117

dS: T = l (L.6)

AdS: W = l (L.7)

Minkowski: V −W = 0. (L.8)

In the complexified setting, the subspace to be deleted from CM# is:

IαβR
αβ = 0 (L.9)

where the bitwistor Iαβ is sometimes referred to as the “infinity twistor”. For the three

spacetimes in question, the tensor Iαβ satisfies:

dS: IαβI
αβ =

2

l2
(L.10)

AdS: IαβI
αβ = − 2

l2
(L.11)

Mink: IαβI
αβ = 0. (L.12)

Explicit representatives for each spacetime are:

I
(dS)
αβ =

1

l

i√
2


0 0 0 −1
0 0 1 0

0 −1 0 0

1 0 0 0

 (L.13)

I
(AdS)
αβ =

1

l


0 1 0 0

−1 0 0 0

0 0 0 −1
2

0 0 +1
2

0

 (L.14)

117Observe that these restrictions make manifest the SO(1, 4), SO(2, 3) and SO(1, 3) symmetries of these
spacetimes since the defining equations are invariant under these group actions.
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I
(M)
αβ =


0 0 0 0

0 0 0 0

0 0 0 +1

0 0 −1 0

 . (L.15)

One of the advantages of working with respect to the conformal compactification is that it

makes manifest the asymptotic behavior of the spacetime in question. In subsequent sections

we shall further review this behavior.

We now turn to the characterization of these spacetimes in terms of twistor space. First,

observe that the quadric equation is automatically satisfied by making the substitution:

Rαβ = ZαW β − ZβWα (L.16)

where Zα andWα are homogeneous coordinates of two points in (complex) projective twistor

space PT•, which we view as a copy of CP3. Said differently, a pair of points in twistor space

yields a single point in spacetime.

Conversely given a point in CM#, this defines a CP1 in PT• via the incidence relation:

R[αβZγ] = 0 (L.17)

which is equivalent to the condition:

RαβZ
β = 0. (L.18)

Written out as a matrix, we have:
0 R34 −R24 R23

−R34 0 R14 −R13

R24 −R14 0 R12

−R23 R13 −R12 0



Z1

Z2

Z3

Z4

 = 0. (L.19)

Although this is four equations, only two are actually independent. Indeed, treating Rαβ as

a 4× 4 matrix, we observe that the determinant is:

detRαβ =
(
εαβγδRαβRγδ

)2
= 0. (L.20)

Since Rαβ is anti-symmetric, we conclude that Rαβ is a rank two matrix. In other words, the

incidence relation defines two divisor equations inside of CP3 = PT•, and their intersection

defines a CP1, specified by Rαβ.
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Figure 14: Penrose diagram for 4D Minkowski space, with metric ds2 = dt2 − dr2 − r2dΩ2
2,

where −∞ < t < ∞ and 0 ≤ r < ∞ and dΩ2
2 denotes the metric for a unit radius S2 (we

hope our choice of sign conventions for the metric is not too distracting). Each point in
the interior represents an S2. We have spatial infinity at i0, timelike future infinity at i+,
timelike past infinity at i−. Future null infinity is at I + and past null infinity is at I −.
There is only a coordinate singularity at r = 0, so one can extend to a bigger region as
specified by a square.

L.1 Minkowski Space

Let us now turn to a further discussion of Minkowski space. Topologically, this spacetime is

given by R × R3. There are a few special regions “at infinity”, as captured by the Penrose

diagram. We have timelike future infinity i+ and timelike past infinity i−. We also have

spatial infinity i0. The segment joining i0 to i+ (resp. i−) defines future (resp. past) null

infinity I + (resp. I −). Future null infinity has the topology of R× S2. In RM#, i0, i+, i−

are all identified with a single point, which is referred to as the “point at infinity” which we

denote by i∞. See figure 14 for a depiction of the Penrose diagram.

All of the points at infinity are characterized by the hyperplane V −W = 0. The point

i∞ is distinguished as the unique point of V − W = 0 which has tangent space equal to

the quadric of equation (L.5). Indeed, the unique differential element for the two defining

equations is:

dFquadric = 2 (TdT + V dV −WdW −XdX − Y dY − ZdZ) (L.21)

dFV−W = dV − dW (L.22)
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which are parallel at the point T = X = Y = Z = (V −W ) = 0. The points of I + and I −

correspond to those points on the intersection of V −W and the quadric which are distinct

from this point of tangency.

Let us now turn to a twistor characterization of the points at infinity for Minkowski

space. The locus of points to be deleted is

Delete: I
(M)
αβ Rαβ = 2R34 = 0. (L.23)

Along this locus, the quadric equation reduces to:

R34 = 0 and det r ≡ R13R24 −R14R23 = 0 (L.24)

where we have introduced the 2× 2 matrix:

rAA′
=

[
R14 −R13

R24 −R23

]
. (L.25)

To deduce which points of twistor space are to be deleted, it is helpful to write out the

incidence relation matrix equation in terms of two component spinors. In this case, writing

(Z1, Z2, Z3, Z4) = (ω1, ω2, π1′ , π2′), we have:

R34ωA = rAA′
πA′ (L.26)

R12πA′ =
(
ε−1 · r · ε

)T
A′A

ωA (L.27)

where the matrix ε is:

ε =

[
0 +1

−1 0

]
. (L.28)

Let us first consider the twistor lift of i∞. This is a single point of RM#, and so lifts to a

CP1 ⊂ PT. The point of tangency is defined by the conditions R34 = 0 and r = 0. In other

words, equation (L.26) is trivially satisfied and equation (L.27) reduces to:

R12πA′ = 0. (L.29)

Since all of the other Rαβ vanish at this point and we are in projective space, R12 ̸= 0 and

we must require π1′ = 0 and π2′ = 0. We denote this distinguished CP1 as CP1(∞):

CP1(∞) = {π1′ = π2′ = 0} (L.30)

Next consider the twistor lift of the remaining points at infinity, namely I + and I −.

These are defined as all points on the quadric such that R34 = 0, but r ̸= 0. Returning to the

quadric equation, this enforces the condition that r is a non-zero matrix but with det r = 0.
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Such 2× 2 matrices can be written as an outer product:

rAA′
= ζAρA

′
(L.31)

for some ζA and ρA
′
. The incidence relations now reduce to:118

[ρ, π] = 0 (L.32)

R12πA′ = ρA′ ⟨ζ, ω⟩ . (L.33)

So, the two component vector πA′ is parallel to ρA′ . Hence, each point of I + and I − lifts

to a CP1 which intersects CP1(∞).

Let us now turn to the characterization of the points which are not at infinity in Minkowski

space so that R34 ̸= 0. In this chart, it is helpful to introduce a 2× 2 position matrix xAA′

with entries:

xAA′
=

1

iR34
rAA′

=
1

i

[
R14/R34 −R13/R34

R24/R34 −R23/R34

]
. (L.34)

In this patch, Minkowski space is represented as the paraboloid:

R12

R34
+ detx = 0 (L.35)

as follows from substitution into the quadric equation. In these variables, the incidence

relation is:

ωA = ixAA′
πA′ . (L.36)

The limit R34 → 0 corresponds to x→∞, which lifts to the “line at infinity”.

Along the real slice of the complexified spacetime, the matrix x satisfies:

x† = −1

i

1

R34

[
R14 R24

−R13 −R23

]
=

1

i

1

R34

[
R14 −R13

R24 −R23

]
= x. (L.37)

L.2 Anti de Sitter Space

Let us now turn to a similar characterization of Anti de Sitter space. Topologically, Anti de

Sitter space is given by an S1 × R3, though we shall work with the covering space, which

is topologically equivalent to R × R3. The points at infinity in RM# are those along the

real quadric with W = 0. The Penrose diagram is quite different from Minkowski space. In

this case, it is given by an infinitely long strip (it is also helpful to view it as an infinitely

long cylinder). The line on the left is conventionally defined to denote the center of AdS,

while the line at the right defines the “boundary” of AdS space. Spacelike infinity i0 and

118It is customary in the scattering amplitudes literature to denote symplectic pairings (via the appropriate
ε tensor) of left- and right-handed spinors as ⟨•, •⟩ and [•, •].
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null infinity I are given by the same timelike three-surface, which we denote by I . The

subspace I has topology S2×R. Timelike future infinity i+ and past infinity i− correspond

to two points disjoint from I and sit midway between the center of AdS and I , infinitely

far in the past and future of the infinite strip.

In this case we observe that along the hyperplane W = 0, there is no distinguished point

which shares the same tangent space vectors as the quadric. This already means that there

is no “distinguished” spacelike point at infinity, as in the case of Minkowski space. The locus

of points to be deleted from CM# satisfy:

Delete: I
(AdS)
αβ Rαβ = R12 − 1

2
R34 = 0. (L.38)

The quadric equation now reduces to:

R12 − 1

2
R34 = 0 and

1

2

(
R34
)2

+ det r = 0 (L.39)

where the 2× 2 matrix r is the same as in the case of Minkowski space:

r =

[
R14 −R13

R24 −R23

]
. (L.40)

The zero set of equation (L.39) consists of the branches R34 = R12 = 0, while the other has

R34, R12 ̸= 0.

Along the branch R12 = R34 = 0, we have det r = 0, with r ̸= 0. Hence, the matrix r

can be written as the outer product:

rAA′
= ζAρA

′
. (L.41)

The incidence relation then reduces to the two spinor equations:

[ρ, π] = ⟨ζ, ω⟩ = 0. (L.42)

Next consider the locus of points with R34 ̸= 0. By the projective scaling symmetry, it is

enough to set R12 = 1, R34 = 2. The matrix r then satisfies det r = 2, and so in particular is

invertible. Since only two of the incidence relations are independent, it is enough to consider

the incidence relation: [
ω1

ω2

]
=

1

2

[
R14 −R13

R24 −R23

]
·
[
π1′

π2′

]
(L.43)

where R24R13 −R13R24 = 2.

Let us next turn to the incidence relation for points not at conformal infinity. The
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admissable points on the quadric satisfy:

R12 − 1

2
R34 = l. (L.44)

In this case, the quadric equation becomes:

1

2

(
R34
)2

+ l ·R34 + det r = 0. (L.45)

Solving for R34 and R12 then yields:

R34 = −l ±
√
l2 − 2 det r (L.46)

R12 =
1

2

(
l ±
√
l2 − 2 det r

)
(L.47)

where both signs are admissable. When l2 > 2 det r, the incidence relations can then be

written as:

ωA =
−rAA′

πA′

l ∓
√
l2 − 2 det r

(L.48)

πA′ =
2 (ε−1 · r · ε)TA′A ω

A

l ±
√
l2 − 2 det r

(L.49)

for l2 − 2 det r > 0. Note that when one denominator vanishes, the other remains finite.

L.3 De Sitter Space

Finally, we turn to de Sitter space. De Sitter space is specified by the slice through RM#

which satisfies T = l. In other words, we are instructed to delete the subspace T = 0. The

Penrose diagram of de Sitter space is a square, but with sides parallel to the page. This

spacetime has topology R×S3. The left edge of the Penrose diagram defines the north pole

of the S3, and the right edge defines the south pole. The bottom edge corresponds to past

null infinity I −, and the upper edge corresponds to future null infinity I +. See figure 15

for a depiction of the Penrose diagram.

The locus of points to be deleted from CM# satisfy:

Delete: I
(dS)
αβ Rαβ =

i√
2

(
R23 −R14

)
= 0. (L.50)

Along this locus, the quadric reduces to:(
R14
)2

+ det r = 0 (L.51)
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Figure 15: Penrose diagram for 4D de Sitter space. Each interior point denotes an S2, and
each horizontal line denotes an S3. The north pole of the S3 is specified on the left and
the south pole of the S3 is specified on the right. Future null infinity is at I +, and past
null infinity is at I −. A signal sent from the south pole to the north pole takes an infinity
amount of time (bottom right to upper left vertices of the square).

where as opposed to the case of Minkowski space and AdS, here the matrix r is given by:

r =

[
R12 R24

R13 R34

]
. (L.52)

The incidence relations can be expressed as:

R14µa = raa
′
λa′ (L.53)

R23λa′ =
(
ε−1 · r · ε

)T
a′a
µa (L.54)

where we have introduced a different basis of spinors λa′ and µ
a:[

λ1′

λ2′

]
=

[
Z4

Z1

]
,

[
µ1

µ2

]
=

[
Z2

Z3

]
. (L.55)

Let us now study the locus of deleted points. Consider first the branch R14 = R23 = 0

and det r = 0. In terms of the original real variables, this condition is:

2 det r = V 2 −W 2 −X2 − Y 2 = 0. (L.56)
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Due to the projective condition, r is non-zero, and so can be represented as the outer product:

raa
′
= ϕaχa′ . (L.57)

The corresponding twistor line is then:

ϕaµa = χa′λa′ = 0. (L.58)

Next consider the locus R14 = R23 ̸= 0. In this case, we have det r ̸= 0, and the incidence

relation becomes:

µa =
raa

′
λa′

R14
. (L.59)

We now turn to the incidence relation for the points which are a part of dS. For these

points, we have R23 = R14 − i
√
2l. The quadric reduces to:(
R14
)2 − i√2l ·R14 + det r = 0 (L.60)

so that R14 and R23 satisfy:

R14 = i
l ±
√
l2 + 2det r√

2
(L.61)

R23 = −i l ∓
√
l2 + 2det r√

2
. (L.62)

The incidence relations can now be written as:

µa =
−i
√
2raa

′
λa′

l ±
√
l2 + 2det r

(L.63)

λa′ =
i
√
2(ε−1 · r · ε)Ta′aµa

l ∓
√
l2 + 2det r

. (L.64)

L.3.1 Observers on the S3

To conclude our discussion, we consider the twistor associated with an observer sitting at

the north and south poles of the S3. With respect to the coordinate system satisfying the

quadric equation:

− V 2 +W 2 +X2 + Y 2 + Z2 = l2, (L.65)

the north and south poles are taken to be situated at X = Y = Z = 0. By convention, we

take:

Wnorth = +
√
l2 + V 2 (L.66)

Wsouth = −
√
l2 + V 2. (L.67)
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At finite times in global coordinates.

Let us now consider in more detail the twistor line for the north and south poles at

infinity. This is given by X = Y = Z = 0 and V = ±W . In terms of the R coordinates, this

is the point:

N∞: R
12 ̸= 0 all other Rαβ = 0. (L.68)

S∞: R
34 ̸= 0 all other Rαβ = 0. (L.69)

Plugging these values into the incidence relations, the north pole and south pole of the S3

are respectively given by:

CP1
N (∞) :

{
Z3 = Z4 = 0

}
(L.70)

CP1
S(∞) :

{
Z1 = Z2 = 0

}
. (L.71)

A very interesting feature of these two CP1’s is that they do not intersect. This is simply

the twistorial lift of the statement that a signal sent from the south pole takes infinite time

to reach the north pole.

Next consider the twistor lift of the south pole at finite global times. Such points satisfy

X = Y = Z = 0 and T = l. Hence, Wnorth = +
√
l2 + V 2 and Wsouth = −

√
l2 + V 2. In terms

of the R coordinates we have:

R12 =
1

2

(
V ±

√
l2 + V 2

)
, R13 = 0, R14 =

il√
2

(L.72)

R23 = − il√
2
, R24 = 0, R34 = V ∓

√
l2 + V 2. (L.73)

Solving the incidence relations, the corresponding twistor lines are, as a function of V , given

by:

CP1
N(V ) :

{(
V +
√
l2 + V 2

)
Z2 + i

√
2lZ4 =

(
V +
√
l2 + V 2

)
Z1 + i

√
2lZ3 = 0

}
(L.74)

CP1
S(V ) :

{(
V −

√
l2 + V 2

)
Z2 − i

√
2lZ4 =

(
V −

√
l2 + V 2

)
Z1 − i

√
2lZ3 = 0

}
. (L.75)

Let us note that sending V → −V interchanges the two twistor lines.

In the limit of infinite V , we obtain:

CP1
N(V →∞) :

{
Z1 = Z2 = 0

}
= CP1

N(∞) (L.76)

CP1
S(V →∞) :

{
Z3 = Z4 = 0

}
= CP1

S(∞). (L.77)
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M Alternative Supersymmetric Action

In the main body of this note we discussed a physically motivated choice for Frobenius

conjugation on fermionic fields. In this Appendix we briefly discuss the structure of the

“other choice” where we instead enforce the condition:

F (χψ) = F (χ)F (ψ) = χψ, (M.1)

that is, we do not reverse the order of multiplication for products of fermion after Frobenius

conjugation. This leads to some algebraic simplifications in the construction of various

actions. The price we pay, however, is that there are now some new minus sign factors which

must be taken into account.

We now construct an example of a 1D supersymmetric action in characteristic p, but

in which our fermion products are invariant under the Frobenius automorphism. With this

in mind, we now consider a single Fp valued bosonic field ϕ(t) and a pair of Fp valued

Grassmann variables χ(t) and ψ(t). We also introduce an Fp valued auxiliary field f(t) and

a superpotential W (ϕ) which will be a polynomial in the ϕ variable with coefficients in Fp.

We denote the derivatives of W with respect to ϕ as W ′ and W ′′. Our Lagrangian is:

L =
1

2
(∂tϕ)

2 + χ∂tψ −
1

2
f 2 +W ′f +W ′′χψ. (M.2)

Observe that there are no factors of “i” and the products of fermions are invariant under

Frobenius conjugation. An important comment is that the sign of the quadratic term of

the auxiliary field has flipped sign compared with our treatment in the main body. This

does not really mean the theory has a problematic potential since one could instead write

−1 = (p − 1). Indeed, we have already mentioned that notions such as the signature of a

“metric” lose their meaning in characteristic p anyway.

We now verify that this Lagrangian is supersymmetric. We introduce the two variations:

δ1ϕ = ψ, δ1ψ = 0, δ1χ = −(∂tϕ+ f), δ1f = −∂tψ (M.3)

δ2ϕ = χ, δ2ψ = −(∂tϕ− f), δ2χ = 0, δ2f = +∂tχ. (M.4)

Consider first varying with respect to δ1. This yields:

δ1L = (∂tϕ) (∂tψ) + (−∂tϕ− f)∂tψ − (−∂tψ)f (M.5)

+W ′′(ψ)f +W ′(−∂tψ) (M.6)

+W ′′(−∂tϕ− f)ψ (M.7)

= ∂t (−W ′ψ) . (M.8)

Observe that we have a “total derivative,” which as we already mentioned, will be dropped

(since it specifies an exact differential form).
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Next, consider varying with respect to δ2. This yields:

δ2L = (∂tϕ) (∂tχ)− ∂t(−∂tϕ+ f)χ− (+∂tχ)f (M.9)

+W ′′(χ)f +W ′(+∂tχ) (M.10)

−W ′′(−∂tϕ+ f)χ (M.11)

= ∂t((∂tϕ)χ− fχ+W ′χ), (M.12)

which is again a “total derivative.” Integrating out the auxiliary field f , we arrive at a

potential for the field ϕ given by:

V (ϕ) = −1

2
W ′W ′, (M.13)

which has a sign flip relative to the characteristic zero case. This is in some sense immaterial

because “positive and negative” have little meaning in the characteristic p setting. For

example, we could view the “negative number” −1 = p− 1 as actually a “positive number.”
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N Evidence for Quantized FI Parameters

In this Appendix we present some evidence that quantization of FI parameters is compatible

with string theory considerations. This issue has been studied using the formalism of 4D

N = 1 supergravity in references [15–17]. These considerations do not constitute a full

construction, and amount to consistency conditions which would be needed in order to make

sense of any putative effective field theory. Indeed, because the size of these quantized

parameters is near the Planck scale, effective field theory arguments are not fully justified.

Our analysis will be similarly limited since we will be making use of notions from effective field

theory, but applying them in a regime where mass scales are extremely large. Nevertheless,

we find it encouraging that this analysis is compatible with such considerations.

The main idea will be to consider the U(1) gauge theory associated with the worldvolume

of a probe D3-brane in type IIB string theory on a spacetime of the form M4 × M6 so

that M4 refers to the macroscopic spacetime and M6 to the small internal directions. As

the subscripts suggest, M4 is taken to be a four-manifold and M6 is taken to be a six-

manifold. The configuration of branes we consider consists of a D9- / anti-D9-brane pair,

and a D7-brane filling M4 and wrapping an internal four-cycle SGUT. We assume that SGUT

is contractible and is threaded by non-zero NS two-form flux and that the volume of M6 is

suitably quantized in flux units as set by the D9- / anti-D9-brane pair.

In the decoupling limit of the D7-brane gauge theory, this leads to a non-commutative

gauge theory on the internal directions of SGUT, as in references [335, 283]. On the Higgs

branch of the D3-brane probe theory, the D3-brane dissolves as an instanton, which corre-

sponds to an anti-self-dual field strength in the internal directions of M4. We assume that

the B-flux has been chosen so that it is self-dual. In other words as explained in [336], the

D3-brane sees a background of anti-D3-branes. In this case, the small instanton limit is

absent, and there is instead an FI parameter ξ in the probe D3-brane, which is set by the

value of the B-field.

Our first task is to estimate the value of ξ. At the origin of moduli space, the energy

density for this system is:

E =
g2YM

2
ξ2. (N.1)

We can also attempt to evaluate this directly in the brane configuration: The energy density

is that of a D3- / anti-D3-brane annihilation. Our admittedly crude estimate of this will be

to simply sum the tensions for a D3-brane and anti-D3-brane, which should really be viewed

as a lower bound:119

E = TD3 + TD3 = 2× 1

gs

1

(2π)3
1

(α′)2
. (N.2)

The gauge coupling for a single D3-brane is also fixed by the DBI action to be g2YM = 2πgs.

119We provide a mild “improvement” on this estimate in section N.1.
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We therefore obtain our value for ξ:

ξ = 2× 1

gs

1

(2π)2
1

α′
. (N.3)

We now relate this value to the 4D reduced Planck mass. Recall that the 10D Newton’s

constant is given by:

16πG
(10D)
N = (2π)7g2s(α

′)4. (N.4)

Compactifying on a six-manifold, we obtain the 4D Newton’s constant:

16πG
(4D)
N =

(2π)7g2s(α
′)4

Vol(M6)
. (N.5)

Now, in the present setup with a D9- / anti-D9-brane pair, we can compute the volume

Vol(M6) in units associated with switching on a non-trivial flux in the M4 directions which

induces a Euclidean D5- / anti-D5-brane pair wrapped over M6. Hence, the natural scaling

of Vol(M6) is set in units of D5-brane tension:

1

Vol(M6)
= ND5 (TD5 + TD5) = 2ND5 ×

1

gs

1

(2π)5
1

(α′)3
, (N.6)

whereND5 is a positive integer. Plugging in, we obtain the value of the 4D Newton’s constant:

16πG
(4D)
N = 2ND5 × (2π)2gs(α

′) = 2ND5 ×
2

ξ
(N.7)

or:

ξ = ND5 ×
4

16πG
(4D)
N

= 2ND5 ×M2
pl (N.8)

where M2
pl = 1/8πG

(4D)
N . We note that it is appropriate to consider a D5-brane background

rather than some other (p, q) five-brane because in the duality frame being considered, D5-

branes are the lowest tension five-branes available.

Let us now generalize this to FI parameters of a d-dimensional gauge theory, for d = 2k.

In this case, a similar argument yields the relations:

16πG
(d)
N = gs × 2ND(9−d) ×

1

(2π)2−d
1

(α′)(2−d)/2
(N.9)

ξ2 = 4× T 2
(d−1) × (2πα′)2 = 4× 1

g2s
× 1

(2π)2d−4
× 1

(α′)(d−2)
(N.10)

which in turn implies:

ξ = 2× 1

gs
× 1

(2π)d−2
× 1

(α′)(d−2)/2
(N.11)
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or:

ξ = 2ND(9−d) ×
1

8πG
(d)
N

. (N.12)

So, we see that the quantization of ξ is again in even steps of 1/8πG
(d)
N .

N.1 Issues and Workarounds

The main weakness in this line of argument is that we are working in the limit of large field

ranges, and so cannot really rely on effective field theory reasoning, as we have implicitly

done in matching parameters of the supersymmetric effective field theory of a D3-brane. An

additional concern is that to estimate various energy densities, we made the crude approx-

imation given by summing the individual tensions of the branes, with little regard for the

formation of non-perturbative bound states. That being said, the estimate is “not as bad”

as one might initially think. To see why, suppose that we return to line (N.2) and allow for

an overall constant which parameterizes our ignorance of brane annihilation:

E = εD3 × (TD3 + TD3) = εD3 × 2× 1

gs

1

(2π)3
1

(α′)2
. (N.13)

We would then get a different value for the FI parameter:

ξ =
√
εD3 × 2× 1

gs

1

(2π)2
1

α′
. (N.14)

Let us further assume that in our volume estimate based on D5- / anti-D5 annihilation,

a similar constant appears. Then, returning to line (N.6) would yield:

1

Vol(M6)
= εD5 ×ND5 (TD5 + TD5) = εD5 × 2ND5 ×

1

gs

1

(2π)5
1

(α′)3
. (N.15)

Recomputing the relation between the 4D Newton’s constant and the FI Parameter now

yields:

16πG
(4D)
N =

εD5√
εD3

× 2ND5 × (2π)2gs(α
′) =

εD5√
εD3

× 2ND5 ×
2

ξ
, (N.16)

i.e., to have quantization of the FI parameter, we would need the following relation to hold:

εD5√
εD3

×ND5 ∈ Z. (N.17)

It is unclear to us whether this is satisfied, but if it holds, then one can proceed as before

(where we set the ε’s to one). While this is still quite speculative, we find it encouraging.

We defer these issues to future investigations.
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O Brief Review of Qp, Qp and Cp

In this Appendix we present a brief review of the p-adic numbers, Qp.
120 We also discuss

the related fields Qp and Cp. This material is entirely standard, and can be found in many

places. For an exposition which is “physicist friendly”, see for example [12] and references

therein.

Now, we have already given one definition of this number system by first constructing

the ring of integers Zp as the inverse limit of Z/pnZ, namely:

Zp = lim←−Z/p
nZ. (O.1)

One can then define Qp as the field of fractions for Zp, with induced topology set by the

inverse limit system.

A perhaps more direct way to define the p-adic numbers is to begin with the rational

numbers Q and introduce a corresponding p-adic norm |·|p : Q → R≥0 by the rule that for

x = a/b a rational number with a and b integers such that a = a0p
m and b = b0p

n with a0
and b0 both relatively prime to p, the p-adic norm of x is given by:

|x|p = pn−m. (O.2)

The p-adic norm satisfies the following properties:

|x|p ≥ 0 for all x (O.3)

|x|p = 0 if and only if x = 0 (O.4)

|x|p |y|p = |xy|p for all x and y (O.5)

|x+ y|p ≤ max
(
|x|p , |y|p

)
for all x and y. (O.6)

The last condition is known as the “strong triangle equality”, and from it, one can derive the

standard triangle inequality |x+ y|p ≤ |x|p+|y|p. The strong triangle inequality defines what

is referred to as a non-Archimedean norm. It is also customary to interpret the standard

Archimedean norm as being obtained from “the prime at p =∞”.

The topology defined by the p-adic norm is rather different from the Archimedean case.

For example, consider any series of the form:

a = pm
∑
j≥0

ajp
j, (O.7)

with |aj|p = 1 for all j. This converges, and has p-adic norm p−m. An especially important

120To our knowledge, the p-adic numbers were first introduced in reference [337].
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subset is the ring of integers Zp as defined by the ball of unit radius:

Zp =
{
x ∈ Qp such that |x|p ≤ 1

}
. (O.8)

Starting from Zp, observe that there is a maximal prime ideal generate by p itself. Taking

the quotient Zp/pZp results in the residue field Fp.

In the case of the real numbers R, the algebraic closure is given by the complex numbers

C, which is also metrically complete. For the p-adics, the separable algebraic closure Qp

also has a p-adic norm, which can be defined by extension of the one defined over Qp. For a

Galois extension K of Qp, we can treat K as a vector space over Qp. In particular, for any

α ∈ K, we can consider the product over all the Galois conjugates. Call this NormK/Qp(α).

By construction, NormK/Qp(α) is an element of Qp, and so we can also take its p-adic norm.

The extension of the p-adic norm to K is then given by taking:

|α|p ≡
∣∣NormK/Qp(α)

∣∣1/n
p

, (O.9)

where n = [K : Qp] is the degree of the field extension. As a point of notation, we shall often

denote by Qq the unramified field extension of degree n, with q = pn.121

Proceeding to Qp, the algebraic completion of Qp, one can show that Qp is not metrically

complete. Indeed, one can construct Cauchy sequences which do not converge in Qp. Fol-

lowing [338], one way to establish this is to apply the Baire category theorem [339], which

tells us that every metrically complete space is a Baire space.122 To establish the claim, it is

enough to show that Qp is not a Baire space. Here, we have the fact that the algebraic closure

has countably infinite dimension. Moreover, for every fixed d ∈ N, there are a finite number

of degree d field extensions of Qp. As a consequence, Qp cannot be metrically complete. We

note that the argument fails (as it must) in the case of Q∞ = R since the algebraic closure is

a degree two extension of R, namely C = R(
√
−1). A perhaps more direct way to establish

the same claim is to consider the collection of partial sums:

aK =
K∑

n=1

p(n+
1
n). (O.10)

We observe that for a fixed K, the corresponding aK resides in a finite field extension of

Qp, namely we adjoin numbers such as p1/n for n = 1, ..., K. On the other hand, the limit

K →∞ does not converge in Qp.

The metric completion of Qp is known as Cp, and this space is both algebraically closed

and metrically complete. A helpful comment here (especially when we turn to the p-adic log-

121For a brief account of ramification, see Appendix S. The unramified extension has the pleasant feature
that the residue field for Qq is just Fq.
122Recall that a Baire space is one for which for every countable set of dense open sets Un for n ∈ N, the

intersection over all the Un is still dense.
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arithm) is that Cp admits a decomposition as follows (we follow the discussion and notation

in [340]):

Cp = {prwu with r ∈ Q, w ∈ W u ∈ U} = pQ ×W × U, (O.11)

where pQ denotes all rational powers of p, W is the group of all roots of unity in Cp, and U

is the disk centered at 1 of unit radius:

U = {|u− 1|p < 1 with u ∈ Cp}. (O.12)

One can also construct non-canonical isomorphisms between Cp, C, and thus also between

Cp and Cp′ for p and p′ distinct primes. As explained in footnote 74, this follows from the

fact that C and Cp have the same degree of transcendence over Q. A non-trivial consequence

of this fact is that we can also extend the p-adic norm to the complex numbers (see e.g.,

[341,257]). Indeed, given a field isomorphism:

ϕ : C→ Cp (O.13)

we can assign a p-adic norm to elements z ∈ C as follows:

|z|p ≡ |ϕ(z)|p. (O.14)

By the same reasoning, the converse also holds; we can assign Archimedean norms to elements

of Cp. The use of this in the physical setting is more elusive; one is often considered with

various analytic properties, and the map ϕ is not even continuous. That being said, if

one continues to work at the level of algebraic structures and morphisms (as we have been

advocating throughout this note) then many structures carry through.
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P Witt Vectors

In this Appendix we briefly discuss some aspects of Witt vectors [342]. We saw the appear-

ance of these in our brief discussion of crystalline cohomology in subsection 13.2, and again

in section 16 when we discussed reduction of an integer valued action mod N . Again, as we

are mathematical dilettantes, we will content ourselves to closely follow reference [343]. For

additional discussion of Witt vectors and their applications, see reference [344].

Given a prime number p and a commutative ringR, we denote aWitt vector as (X0, ..., Xm, ...)

with Xi ∈ R. Next, introduce the Witt polynomials:

V (n) =
n∑

i=0

piF i(Xi), (P.1)

where F (X) = Xp is the Frobenius morphism. We define a ring of Witt vectors on the V (n)’s.

These are also known as the “ghost components”Ṫhere is an essentially unique way to make

the space of Witt vectors into a commutative ring such that addition and multiplication

occur componentwise. In terms of two Witt vectors U and V , we have:

(U + V )(i) = U (i) + V (i) (P.2)

(UV )(i) = U (i)V (i). (P.3)

Given two Witt vectors (X0, X1, ...) and (Y0, Y1, ...) the explicit formulas for the first few

entries of addition and multiplication are:

(X0, X1, ...) + (Y0, Y1, ...) = (X0 + Y0, X1 + Y1 + (Xp
0 + Y p

0 − (X0 + Y0)
p/p), ...) (P.4)

(X0, X1, ...)× (Y0, Y1, ...) = (X0Y0, X0Y
p
1 +Xp

1Y1 + pX1Y1, ...) (P.5)

where the appearance of “division by p” in the addition rule is just a formal way of condensing

the notation for expanding out the binomial sum (no inverse powers of p appear in the final

expressions).

For the purposes of this note, the main case of interest is the special case where R actually

refers to a finite field such as Fp or Fq. In the case of Fp, the ring of Witt vectors is just the

p-adic integers Zp written in terms of Teichmüller representatives, and in the case of Fq it is

the unramified extension of degree n of Zp.
123

Let us explain how this works in more detail for the special case of Zp, the p-adic ring of

integers. Recall that this space is just the elements of the p-adic numbers with p-adic norm

less than or equal to one. Each such element ϕ ∈ Zp can be written as a power series:

x =
∑
i

xip
i, (P.6)

123For a brief discussion of ramification (or lack thereof) for local fields, see Appendix S.
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with ai ∈ {0, ..., p− 1}. Now, an undesirable feature of this expansion is that the coefficients

ai do not respect the addition and multiplication rules of the Witt vectors. To get a suitable

presentation, we instead use Teichmüller representatives. These are given by 0 as well as the

p− 1 roots of unity in Zp. Algorithmically, we begin with a p-adic integer x as in equation

(P.6) and build a new representative:

x =
∑
i

ω(xi)p
i, (P.7)

which converges in the p-adic metric to the original sum. The algorithm for building these

representatives is also straightforward, and follows from Hensel lifting / Newton’s algo-

rithm.124

Rather than present this in full detail, we just illustrate with an example of the algorithm

in practice, closely following the exposition in [343]. The first term in the sequence is:

ω(x0) = x0. (P.8)

After this, we construct ω(x1) by finding the unique solution of xp−1 − 1 = 0mod p2 such

that x = x0mod p. Call this solution ω(x1). Next, we compute xp−1−1 = 0mod p3 such that

x = ω(x1)mod p2. Observe that these representatives do not necessarily belong to the set

{0, 1, ..., p−1}. They do, however, have the important property that ω(xi)
p = ω(xi)mod pi+1,

which is what makes them more suited to an analysis which respects Frobenius conjugation.

As an example, the first few entries of the Witt vector for 2 with respect to the prime p = 5

are (2, 7, 57, ...).

124 This follows from Hensel’s lemma (see [345, 346]). Following [347], a “basic version” of this lemma
asserts that for f(t) ∈ Zp[t] and a ∈ Zp such that f(a) = 0 mod p and f ′(a) ̸= 0 mod p, then there is a
unique α ∈ Zp such that f(α) = 0 in Zp and α = 0 mod p. This can be extended in various ways to more
abstract settings. See e.g., reference [347] as well as [348] for additional discussion.
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Q Exponential Function on the p-adics

In this Appendix we briefly review the convergence of the p-adic exponential function. Recall

that for a series such as: ∑
n≥0

cnx
n (Q.1)

the radius R of convergence is given by:

R =
1

lim sup
n→∞

|cn|1/n
. (Q.2)

We are specifically interested in the case of the exponential function, as specified by the

power series:

exp(x) =
∑
n≥0

xn

n!
, (Q.3)

interpreted as a sum in either Qp or Cp. In our case, it is enough to determine the values of

t such that:

lim
n→∞

∣∣∣∣xnn!
∣∣∣∣
p

< 1. (Q.4)

Our discussion closely follows the one given in reference [349] (see also [350]). We begin

by estimating the p-adic norm for n! in the large n limit, which we write as:

|n!|p = pordp(n!), (Q.5)

where we have introduced the p-adic order of n!, as denoted by ordp(n!). To begin, we count

the number of powers of p which appear in n!. To this end, we observe that this can be

written as:

ordp(n!) =
∑
k≥1

⌊
n

pk

⌋
, (Q.6)

namely, we divide by powers of p and round down. This works because in n!, we are counting

how many integers up to n are divisible by p, and then by p2, and so on. With this step in

place, we introduce the p-adic expansion of n:

n = a0 + a1p+ ...+ arp
r. (Q.7)

So, we see that the sum over k in equation (Q.6) actually ranges from k = 1 up to k = r.

Moreover, we have, for 1 ≤ k ≤ r:⌊
n

pk

⌋
= ak + ...+ arp

r−k. (Q.8)
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Performing the sum over k and regrouping terms with common values of ai, we have:

∑
k≥1

⌊
n

pk

⌋
= a1 + a2(1 + p) + ...+ ar(1 + p+ ...+ pr−1) (Q.9)

=
1

p− 1

(
a1(p− 1) + a2(p

2 − 1) + ...+ ar(p
r − 1)

)
, (Q.10)

so in other words we get:

ordp(n!) =
1

p− 1
(n− (a0 + a1 + ...+ ar)) . (Q.11)

From this, we can clearly bound ordp(n!) as:

1

p− 1
(n− (r + 1)(p− 1)) ≤ ordp(n!) <

n

p− 1
. (Q.12)

On the other hand, we also have that:

pr ≤ n < pr+1, (Q.13)

so we have:

r ≤ logp n < r + 1. (Q.14)

Consequently, the inequalities of line (Q.12) can also be expressed as:

n

p− 1
− (logp n+ 1) ≤ ordp(n!) <

n

p− 1
. (Q.15)

Dividing by n and taking the limit n→∞, we establish:

lim
n→∞

ordp(n!)

n
=

1

p− 1
. (Q.16)

Next, we return to equation (Q.4). The condition for the exponential series to converge

is that:

lim
n→∞

∣∣∣∣ x

(n!)1/n

∣∣∣∣
p

< 1, (Q.17)

or equivalently:

|x|p < p−1/(p−1). (Q.18)

As an additional comment, we observe that as p becomes large, we have:

lim
p→∞

p−1/(p−1) = 1, (Q.19)

so the radius of convergence is greatly reduced from the complex case.
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R Logarithm Function on the p-adics

In the previous Appendix we discussed the exponential function on the p-adics. Here, we

discuss a similar analysis in the case of the logarithm function. To begin, we recall that we

have the standard power series expansion:

log(1 + x) =
∑
n≥1

(−1)n+1x
n

n
. (R.1)

This series converges on the p-adics for |x|p < 1, as follows immediately from an application

of the ratio test. Far more non-trivial is that much as in the complex case where we can

define a logarithm function log : C× → C, there exists an extension of the power series to a

function:125

logp : C×p → Cp (R.2)

which satisfies the conditions:

logp(ab) = logp(a) + logp(b) for a, b ∈ C×p . (R.3)

Following [350, 351, 340], the main idea behind the extension to all of C×p is to first write a

general element x ∈ C×p in the form (see equation (O.11)):

x = prwu, (R.4)

where r ∈ Q, |w|p = 1, and |u− 1|p < 1. A canonical choice in extending the logarithm

is then to require logp(p) = 0, and in this case, the evaluation of the logarithm is specified

by:126

logp x = logp u. (R.5)

This is sometimes referred to as the Iwasawa logarithm.127

As one might hope, the p-adic logarithm logp behaves as the inverse function to the p-adic

exponential. The only subtlety here is that we must ensure the appropriate domain of support

for the various arguments to make sense. Assuming, for example, that |x|p < p−1/(p−1), then

we have:

logp(expp x) = x, (R.6)

and also:

expp(logp(1 + x)) = 1 + x. (R.7)

125One notational comment: the subscript here clearly refers to working with the prime p, it is not (as
in the setting over the real numbers) specifying the base of the logarithm. Indeed, shortly we will take
logp(p) = 0, quite different from the “usual” case!
126Namely, we also require logp w = 0.
127It is perhaps not obvious, but one can make different choices for the extension of the logarithm function

depending on the value of logp(p). We have opted for the “simplest and canonical” choice.
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In this way, we can also specify a general p-adic power:

xz = expp(z logp x), (R.8)

provided the domains of support make sense.

The logarithm plays an important role in many areas of quantum field theory, especially

in terms of non-analytic structure in scattering amplitudes. In that context, there are other

generalizations which become prominent at higher order in a loop expansion. For example,

one often encounters polylogarithms (see e.g., [352] and references therein):

Lik(x) =
∑
n≥1

xn

nk
, (R.9)

where log(x) = −Li1(1 − x). There is a similar treatment of analytic continuation of the

polylogarithms available, and this can also be given a geometric presentation for rigid analytic

spaces using Coleman’s theory of p-adic integration [353], to which we refer the interested

reader for additional details.
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S Ramification for Algebraic and Local Fields

In this Appendix we present a brief review of ramification theory. We begin with a brief

review of the case of algebraic number fields, namely finite field extensions of Q, and then

turn to the case of local fields, where our main set of applications will involve finite field

extensions of Qp. Again, we proceed mainly as a tourist and so will be content to provide a

summary at the level given in reference [354] for algebraic number fields, and reference [355]

as well as the notes of reference [356] for local fields. For a more comprehensive introduction

to some of these notions, see e.g., reference [357].

To begin, suppose we have an algebraic number field K, i.e., a finite field extension of

the rational numbers Q. We can then consider the ring of integers128 OK , as well as a prime

ideal of OK , call it p. Now, suppose we have some finite field extension L/K. We can then

consider the ring of integers OL, as well as the ideal generated by pOL. Rather importantly,

it could be that inside OL, p may have a different factorization. In general, for prime ideals

pi of OL, we have a factorization:

pOL = pa11 ...p
am
m OL, (S.1)

and we say that the prime p has ramification index ai at prime pi, whenever ai > 1. We also

say that the ramification is tame when all ai are relatively prime, and otherwise we say the

ramification is wild.

To give an example of ramification which we will make use of later, consider the cyclotomic

extensions of Q, as obtained by adjoining an Nth root of unity, namely solutions to ξN = 1.

Call this field extension L = Q(ξ). In this case, we have Gal(L/Q) = (Z/NZ)×. Taking

N = p a prime number, and ℓ ̸= p some other prime number, we observe that there is no

ramification over ℓ. There is, however, ramification over the prime p. To establish this,

consider the roots of the polynomial xp − 1. We have:

xp − 1 = (x− 1)(x− ξ)...(x− ξp−1). (S.2)

Dividing both sides by x− 1, we get the pth cyclotomic polynomial:

xp−1 + xp−2 + ...+ 1 = (x− ξ)...(x− ξp−1). (S.3)

Next, evaluate at x = 1. Then, we obtain the relation:

p = (1− ξ)...(1− ξp−1). (S.4)

128Recall that for an algebraic number field K, the ring of integers consists of all elements in K which are
also roots of a monic polynomial with integer coefficients, i.e., xn + cn−1x

n−1 + ...+ c0 = 0, for some ci ∈ Z,
and n > 0. For example, the integers Z = OQ and the Gaussian integers Z[

√
−1] = OQ(

√
−1).
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Next, we observe that for i > 1, we have:

1− ξi

1− ξ
= 1 + ...+ ξi−1, (S.5)

which in turn means that 1 − ξi is in the ideal generated by (1 − ξ) in OL. Returning to

equation (S.4), we conclude that since there are precisely p− 1 such factors we get:

pOL = (1− ξ)p−1OL, (S.6)

so in other words p has ramification degree p − 1 in OL. Note that this also means p =

u(1− ξ)p−1 for some a unit u of OL.
129

Consider next the case of a local field, namely we now assume we are given K a field

with a valuation vK : K → R,130 so that this valuation defines a locally compact topological

field. In this Appendix we make the additional assumption that vK is discretely valued, that

is to say, for K× the non-zero elements of K we can consider the multiplicative subgroup

vK(K
×) ⊂ R×, and we assume that this subgroup is generated by a single element π ∈

vK(K). It is common practice to assume that the valuation is normalized in the sense that

vK(π) = 1. Observe that the standard p-adic norm on Qp with valuation − logp |•| is indeed
normalized, and the uniformizer is just p.

Suppose next that we also have L a Galois extension of K.131 The valuation extends

to L, and we denote this as vL. For both L and K, we can speak of the corresponding

ring of integers OL and OK . In fact, an important fact is that for some α ∈ L, we have

the ring isomorphism OL[α] = OK (as follows from Hensel’s lemma, see footnote 124).

Correspondingly, we can construct the residue fields obtained by quotienting both OL and

OK by their maximal prime ideals pL and pK . This results in residue fields κL and κK , and

in particular, κL is a Galois extension of κK . The subject of ramification theory for local

fields involves measuring the possible “mismatch” between the Galois groups Gal(L/K) and

Gal(κL/κK). As a first approach, we can introduce two numerical invariants which measure

the appearance of possible branch cuts. We refer to the inertia degree fL/K as the degree of

the Galois extension of κL/κK :
132

fL/K = [κL : κK ]. (S.7)

129Recall that u is a unit of a ring R provided there exists a multiplicative inverse v in R, i.e., we have
uv = vu = 1.
130Recall that a valuation behaves very much like a logarithm, since for a, b ∈ K, we demand that v(a) =∞

if and only if a = 0, and v(ab) = v(a) + v(b). For example, for the p-adics Qp, we can take our valuation to
just be v(a) = − logp |p|, in the obvious notation.
131Viewing L as a vector space over K, the condition that we have a Galois extension means that Aut(L/K)

leaves K fixed.
132Recall that the degree of a Galois extension is just the order of the Galois group.
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We also introduce the ramification index:

eL/K = vL(πK), (S.8)

which detects whether we are taking various roots of the original uniformizer on K in ex-

tending to L. An important property of these two numbers is that the degree of the Galois

extension L/K is given by:

[L : K] = fL/KeL/K . (S.9)

We say that an extension L/K is unramified when eL/K = 1, namely fL/K = [L : K]. We

say that an extension L/K is totally ramified when fL/K = 1. More group theoretically, we

have the short exact sequence:

1→ IL/K → Gal(L/K)→ Gal(κL/κK)→ 1, (S.10)

where IL/K is the “inertia group” for the field extension L/K. Observe that the field exten-

sion L/K is unramified when the inertia group is trivial.

The inertia group can be thought of as specifying the first stage of a sequence of filtrations

of ramification groups. For i ≥ 0, we consider the subgroup Gi ⊂ Gal(L/K) which leaves

OL/p
i+1
L invariant. The resulting nested sequence of normal subgroups is then given by:

G−1 ≡ Gal(L/K) ⊃ G0 ⊃ G1 ⊃ ... (S.11)

This sequence trivializes after a finite number of steps. We refer to G0 as the inertia group,

G1 as the wild inertia group, and G0/G1 as the tame inertia group. In terms of these groups,

the case of G0 trivial means L/K is unramified, and the case of G1 trivial is sometimes

referred to as tamely ramified.
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T Approximate Monodromy

In section 17 we discussed our physical expectations that there is a p-adic notion of mon-

odromy which should act on the cohomology groups associated with BPS states in 4D N = 2

systems, as associated with a corresponding Seiberg-Witten curve. In this Appendix we spell

out some additional details on the structure of monodromy.133

To be concrete, fix K a non-Archimedean local field (which we always take to be a field

extension of Qp), and consider the family of elliptic curve given by the Tate curve:

EK ≡ K×/qZ, (T.1)

where here, q ∈ K× such that |q| < 1, and qZ is the subgroup of K× generated by taking

all powers of q.134 We remark that this is a sensible way to construct a p-adic analog of an

elliptic curve. To illustrate, we observe that in the complex analytic setting, we also get an

elliptic curve if we consider C×/qZ with q = exp(2πiτ), and the condition |q| < 1 simply

means we are taking the analog of τ to be (in the complex analytic case) in the analog of

the upper half-plane.

The Tate form has the desirable feature that we can present the elliptic curve in so-called

Tate form:

y2 + xy = x3 + a4x+ a6, (T.2)

where the coefficients a4 and a6 admit q-expansions (see e.g. [358]):

a4 = −
∑
n

5n3 qn

1− qn
and a6 = −

∑
n

7n5 + 5n3

12

qn

1− qn
. (T.3)

The j-invariant of the Tate curve can be read off in the standard fashion from its q-expansion:

j = q−1 + 744 + 196884q + ..., (T.4)

where convergence of all sums is evaluated p-adically. Note, that the analog of “large complex

structure” associated with a type In fiber corresponds to taking q to have small p-adic norm,

for example q = pn for n very large.

We are interested in studying the action of the monodromy group action on the coho-

mology of the Tate curve. For illustrative purposes, we confine our discussion to ℓ-adic

cohomology, though we expect a similar set of statements to hold in the case of rigid coho-

mology (also known as p-adic cohomology). With this in mind, let K = Qp and denote by K

133We thank A. Huang for several patient explanations. The example we present is closely based on these
discussions.
134There is an unfortunate clash of notation with the convention of labelling finite field extensions of Fp as

Fq. Here, we defer to the standard usage in the theory of elliptic curves and modular forms, where we have
a corresponding q-expansion. The context should make clear the sense in which we are using the variable q.
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a separable algebraic closure of K. Then, we can consider the elliptic curve over the closed

field L, and we can attempt to compute the cohomology group:

H1(EK ,Zℓ), (T.5)

where ℓ is a prime distinct from p.

In the present context, “monodromy” involves determining the group action onH1(EK ,Zℓ)

from the inertia group IK/K defined implicitly through the short exact sequence:

1→ IK/K → Gal(K/K)→ Gal(κK/κK)→ 1, (T.6)

where κK ≃ Fp and κK ≃ Fp denote the residue fields of K and K, respectively.

Since we are dealing with an elliptic curve, we can exploit the fact that it comes with a

group law. Indeed, from our definition in equation (T.1), we see that the elliptic curve forms

a group under multiplication inherited from K
×
. It turns out that the cohomology group

H1(EK ,Zℓ) is dual to H1(EK ,Zℓ), which can in turn be written as the inverse limit on n:

H1(EK ,Zℓ) = lim
←
EK (ℓn) . (T.7)

Here, EK (N) is interpreted as a multiplicative subgroup of EK = K
×
/qZ defined by the

conditions:

EK (N) =
{
e ∈ EK such that eN = 1

}
, (T.8)

namely the N -torsion points of the elliptic curve. The inverse limit involves the further

refinement that we work with N = ℓn. So, to track the action of monodromy, it is enough

to study how it acts on the space of N -torsion points.

Our plan in this Appendix will be to carry out this computation in a “leading order”

approximation for a specific set of illustrative choices. To this end, we fix p = 3, ℓ = 2, n = 2

(so that N = 4), and q = 3. Moreover, rather than work with the full separable closure of

K = Q3, we shall instead confine our analysis to the finite extension L = Q3(ω, i), where

ω3 = 1 and i4 = 1. Our first task is to compute the various terms in the short exact sequence

of line (S.10):

1→ IL/K → Gal(L/K)→ Gal(κL/κK)→ 1. (T.9)

First, we calculate Gal(L/K). The Galois group is generated by the transformations

ω 7→ ω2 and i 7→ −i, and we have:

Gal(L/K) ≃ Z/2Z× Z/2Z, (T.10)

in the obvious notation.

Next, we calculate Gal(κL/κK). Now, recall that in Q, (1− ω)2 is ramified at 3. Letting

ν = (1− ω), we see that it is enough to compute the residue field of L at place (1− ω), but
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this just reduces to “dropping” the contribution from ω altogether:

Gal(κL/κK) = Gal(Lν/κK) ≃ Gal(F3(i)/F3). (T.11)

Note, however, that under Frobenius conjuagation, we have i 7→ i3 = −i, so Gal(F3(i)/F3) ≃
Z/2Z is just one of the factors appearing in equation (T.10). Returning to the form of our

short exact sequence, we conclude that the inertia group is given by:

IL/K = (ω 7→ ω2) ≃ Z/2Z. (T.12)

We now ask how the inertia group IL/K acts on the Tate module H1(EK ,Zℓ) = lim
←
EK (ℓn),

at the level of approximation already mentioned. In particular, we just consider the action

of IL/K on the N = 22 = 4-torsion points of EL, i.e.:

IL/K : EL(N)→ EL(N). (T.13)

where we view EL(N) as a module over Z/NZ. For 4-torsion points, we claim that such a

basis is provided by:

b1 =
1− ω
1 + ω

and b2 = i . (T.14)

First of all, we observe that i4 = 1, so this means b2 is a 4-torsion point.

Next, consider b1. Observe that (b1)
2 is actually an element of K, since under the action

ω 7→ ω2 of Gal(L/K), we have:

(b1)
2 =

(
1− ω
1 + ω

)2

7→
(
1− ω−1

1 + ω−1

)2

=

(
ω − 1

ω + 1

)2

= (b1)
2 . (T.15)

In fact, we also have: (
1− ω
1 + ω

)2

= −3, (T.16)

so in particular, we have that b1 satisfies:

(b1)
4 = 9 ∈ K (T.17)

Since we are working in the quotient group EL = L×/qZ, we see that for q = 3, (b1)
4 = 1 in

EL.

To complete the discussion, we finally consider the action of the inertia group IL/K ≃
(ω 7→ ω2) on EL(N). As already mentioned, b2 7→ b2. As for b1, we have b1 7→ −b1 =

b1(b2)
2. Writing this out as an additive group law (rather than the multiplicative group
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action inherited from L×), we can instead write this as:[
b1
b2

]
7→
[
1 −2
0 1

] [
b1
b2

]
, (T.18)

which we recognize as the monodromy associated with an I2 singularity of an elliptic fibration!

Observe that because we are just working with 4-torsion points (instead of the full inverse

limit), then we return to the original basis vector after two applications of the inertia group

(i.e., since 4 ≡ 0 mod 4). As we already remarked in section 17, this is very suggestive,

and strongly suggests that similar monodromic structure will persist in the full action of the

inertia group IK/K , as well as as for different choices of the underlying parameters such as

p, ℓ and q.
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U Aspects of Berkovich Spaces

In this Appendix we present a brief account of the Berkovich spectrum. For further details,

we refer the interested reader to [32] as well as the readable account in [263]. Again, in

keeping with the informal flavor of these notes, we shall appeal to [359] for our account. To

make these notions a bit more concrete, we then present the main examples discussed in the

main body of these notes, involving A1
Berk, P1

Berk and HBerk.

To begin we recall that for a ring A, we can specify a seminorm as a map |·| : A→ R≥0
satisfying the conditions:

|0| = 0 (U.1)

|1| = 1 (U.2)

|f + g| ≤ |f |+ |g| (U.3)

|fg| ≤ |f | |g| . (U.4)

We say the seminorm is multiplicative if |fg| = |f | |g|, and if |f | = 0 implies f = 0, we

say that we have a norm. Assuming A is a ringed norm space with norm ∥·∥, then we can

construct the Berkovich spectrumM(A) as given by the space of multiplicative seminorms

bounded by the norm.

In general, the Berkovich topology is the weakest one such that for any f ∈ A, the map:

φf :M(A)→ R≥0 (U.5)

|•| 7→ |f | (U.6)

is continuous.

At this point, it may appear somewhat jarring to formulate the relevant points in terms

of the “space of seminorms,” but we can see how the standard notions of points can be

associated to each such seminorm. To illustrate, we now fix K and consider a ball of radius

r centered at a point a ∈ K, which we define as:

B(a,r) = {z ∈ K such that |z − a| ≤ r} . (U.7)

Now, the point is that for each such ball, we can define a corresponding seminorm on K[x].

To see how this comes about, we simply define this seminorm |·|B(a,r)
by specifying its values

on all f ∈ K[x] by the condition:

|f |B(a,r)
= sup

z∈B(a,r)

|f(z)| . (U.8)

Observe that the special case where r = 0 gives us back just the usual points of K, but

that now we also include finite sized disks which also include this initial point. In fact,

262



Berkovich’s theorem tells us that every point x ∈ A1
Berk can be viewed as a nested sequence

of disks B(a1, r1) ⊇ B(a2, r2) ⊇ ... ⊇ B(an, rn) ⊇ ... which conveges in the sense that (see

e.g., [32] as well as Theorem 1.3.1 of reference [263]):

|f |x = lim
n→∞

|f |B(an,rn)
. (U.9)

Further, two such nested sequences define the same point if and only if each intersection:

� Case a: Each has a nonempty intersection, and their intersections are the same;

or:

� Case b: Both have empty intersection, and the sequences are cofinal.135

So in other words, we can associate to each point x a corresponding intersection B =

∩B(an, rn). In this case, the points of the affine line split into four distinct types. These are

given by:

� Type I: B is a point of K

� Type II: B is a closed disk with radius belonging to |K×|

� Type III: B is a closed disk with radius not belonging to |K×|

� Type IV: B = ∅

So, in particular, we get the points of K, but also more. In the above, |K×| just denotes
the possible norms of elements of K∗.

By a similar token, we can extend the Proj construction of algebraic geometry to append

a point at infinity. This gives us P1
Berk. Lastly, we can speak of HBerk = P1

Berk\P1
Berk(K)

which we can think of as a “hyperbolic space”. We refer to HR
Berk as the space of type II or

III points in HBerk, and HQ
Berk as the space of type II points in HBerk.

135Recall that for a subset B ⊆ A of a preordered set (A,≤),136we say that B is cofinal with respect to ≤
when, for every a ∈ A, there exists a b ∈ B such that a ≤ b. In the case at hand, we take B and A to be the
sets specified by the corresponding sequences, and ≤ is specified by the containment relation ⊆ of the disks.
136In a preordered set (A,≤) we have, a ≤ a for all a ∈ A (reflexivity) and a ≤ b and b ≤ c implies a ≤ c

for a, b, c ∈ A. Having a partial order involves the slightly stronger condition that a ≤ b and b ≤ a implies
a = b.
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V Tropicalization

In this Appendix we briefly summarize some aspects of tropicalization of a p-adic analytic

space. To set the stage, we recall that in the physics literature, tropical geometry often

appears in the study of (p, q) webs of branes, and their close connection to toric geometry

(see e.g., [360,361]). Here we wish to discuss the case of a p-adic analytic space Xan and its

associated tropical geometry Trop(Xan).

Our discussion follows that in [267]. To begin, we recall that for a p-adic variety X over

a field k, we can specify a moment map to a d-dimensional split algebraic torus T via a

morphism:137

µ : X → T, (V.1)

Under analytification, we then get a moment map:

µan : Xan → Tan. (V.2)

We can specify a tropical map for our analytic torus as follows (with a small abuse of

notation):

Trop: Tan → Rd (V.3)

(z1, ..., zn) 7→ (− log |z1| , ...,− log |zd|) , (V.4)

where the zi denote local coordinates on the torus, i.e., writing it as the group scheme

T = Speck k[T1, T
−1
1 , ..., Td, T

−1
d ], we compose with a suitable evaluation map. We denote by

Ttrop = Trop(Tan) the image set of the tropical map. Then, using our moment map µan, we

see that we can extend this to a tropicalization map µtrop : Xan → Rn, and specify the image

as Trop(Xan) = Xtrop.

This tropicalization serves as the “skeleton” for the analytic space, and moreover, there is

a natural section and embedding available. To illustrate, the section s : Ttrop → Tan is given

by specifying, for every (t1, ..., td) ∈ Ttrop, a seminorm as implicitly defined by the condition

that for every φ ∈ k[T1, T−11 , ..., Td, T
−1
d ] written as:

φ =
∑
m

φmT
m, (V.5)

we have:

|φ (s(t1, ..., td))| = max
m∈Zn

|φm| exp(−m1t1 + ...−mdtd). (V.6)

In particular, s(0) is the usual “Gauss point” of Tan. This also means there is a natural

notion of the skeleton Xtrop embedding in Xan.

137Namely, we introduce the ring R = k[T1, T
−1
1 , ..., Tn, T

−1
n ], and we identify T with the group scheme

SpeckR. In the more common setting of a toric variety, this would just be identified with the standard
complex torus (C×)n which acts on the coordinates of a toric variety.
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Let us also mention that we can view Berkovich space as the inverse limit of all possible

tropicalizations. This is demonstrated in reference [248] (see also [362]).

It is interesting to consider the tropicalization map as applied to some affine curves. To

this end, consider the case of the hyperelliptic curve Σ over Cp embedded in affine space A2:

y2 = xN + cN−1x
N−1 + ...+ c0 =

∏
i

(x− ei), (V.7)

where the ei ∈ Cp are just the roots of our degree N polynomial in x. To construct the

image set Σtrop(Cp), we first observe that:

− log |y| = − (log |x− e1|+ ...+ log |x− eN |) . (V.8)

So in particular, we see that there are distinguished rays for each |x−ei| → 0 for i = 1, ..., N

which tend to (− log |ei|,+∞) in R2. These are all connected up along a graph to the

additional ray (−∞,−∞) as associated with the region (x, y) → (∞,∞), the “point at

infinity” in A2.
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W Evaluating a Berkovich Amplitude

In this Appendix we evaluate some p-adic amplitudes. One interest will be in the limit

n → ∞, which we view as providing an increasingly accurate estimate with the worldsheet

given by Berkovich space. For Qq some degree n unramified extension of Qp, we will be

interested in evaluating the integral:

Bn(a, b) =

∫
Qp

dx |x|a−1 |1− x|b−1 , (W.1)

for a, b ∈ C, where here, the measure factor is just the expected one for Qq, viewed as an

n-dimensional vector space over Qp, and we have also extended the norm, as appropriate.

We shall aim to express this in terms of suitable combinations of the p-adic Gamma function,

defined as:

Γp(s) =

∫
Qp

dx χ(x) |x|s−1 , (W.2)

for s ∈ C, where χ : Qp → C is the character on the additive group (Qp,+). We remark

that in the p-adic setting, we have:

Γp(s) =
1− ps−1

1− p−s
. (W.3)

Additionally, we have the identity:

Γp(s)Γp(1− s) = 1. (W.4)

There is also the identity:

|x|a−1 = Γp (a)

∫
Qp

du χ(ux) |u|−a , (W.5)

as well as its generalization to Qq. For additional relations which are closely related, see for

example reference [272] and references therein.

We begin by reviewing the “standard case” of Qp and we then turn to a similar evaluation

for a degree n unramified extension Qq.

W.1 The Case Qp

Let us begin with an evaluation of the “standard case,” as obtained by evaluating equation

(W.1) in the special case Qq = Qp. Using our relations for the Gamma function, we can first
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write:

B(a, b) =

∫
Qp

dx |x|a−1 |1− x|b−1 (W.6)

= Γp (a) Γp (b)

∫
Qp

dxdudv χ(ux+ v(1− x)) |u|−a |v|−b (W.7)

= Γp (a) Γp (b)

∫
Qp

dxdudv χ(x(u− v) + v) |u|−a |v|−b (W.8)

or:

B(a, b) = Γp (a) Γp (b)

∫
Qp

dxdudv χ(x(u− v))χ(v) |u|−a |v|−b . (W.9)

Next, perform the integral over x. This leaves us with a Dirac delta function, evaluated over

the p-adics:

B(a, b) = Γp (a) Γp (b)

∫
Qp

dudv δ(u− v)χ(v) |u|−a |v|−b (W.10)

= Γp (a) Γp (b) Γp(c) with a+ b+ c = 1. (W.11)

We remark that this is just the formula obtained in [35], which exhibits the necessary crossing

symmetries expected of the p-adic string amplitude.

W.2 The Case Qq

Consider next the case of an unramified extension of Qp. There is an analagous set of

manipulations we can perform in this case, which relies on used the q-extension of the

Gamma function given by:

Γq(s) =
1− qs−1

1− q−s
. (W.12)

In particular, we have, for the degree n field extension:

Bn(a, b) =

∫
Qq

dx |x|a−1 |1− x|b−1 = Γq (a/n) Γq (b/n) Γq(c/n) with a+ b+ c = 1, (W.13)

the only change being that we replaced p with q and rescaled a, b, c. More explicitly, we

have:

Bn(a, b) =
1− pa−n

1− p−a
1− pb−n

1− p−b
1− pc−n

1− p−c
with a+ b+ c = 1. (W.14)
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And so, in the large n limit, we get:

lim
n→∞

Bn(a, b) =
1

1− p−a
1

1− p−b
1

1− p−c
with a+ b+ c = 1. (W.15)

Based on this, we make the further assertion that on A1
Berk, we have:

B(a, b) =

∫
A1
Berk

dx |x|a−1 |1− x|b−1 = 1

1− p−a
1

1− p−b
1

1− p−c
. (W.16)

W.3 Reinterpretation as a Contour Integral

In section 20 we proposed a contour integral prescription for evaluating open string ampli-

tudes in Berkovich spaces. Here we show how to recast the standard integral over Qp, as an

approximation of a contour-like integral. To begin, we start with:

B(a, b) =

∫
Qp

dx |x|a−1 |1− x|b−1 . (W.17)

We break up this integral into shells of fixed |x| = pm. Observe also that the “volume” of

the ball Bm with |x| ≤ pm is:

Vol(Bm) =

∫
Bm

dx = pm, (W.18)

so the volume of Sm, a fixed radius shell with |x| = pm is then:

Vol(Sm) =

∫
Sm

dx = pm − pm−1. (W.19)

With this in place, we observe that we can split up the sum into the contributions |x| < 1,

|x| = 1, and |x| > 1:

B(a, b) =

∫
Qp

dx |x|a−1 |1− x|b−1 (W.20)

=

∫
|x|<1

dx |x|a−1 |1− x|b−1 (W.21)

+

∫
|x|=1

dx |x|a−1 |1− x|b−1 (W.22)

+

∫
|x|>1

dx |x|a−1 |1− x|b−1 . (W.23)
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For |x| ≠ 1, each integral can in turn be broken up into fixed radius shells:∫
|x|<1

dx |x|a−1 |1− x|b−1 =
∑
m<0

Vol(Sm)(p
m)a−1 = −1− p−1

1− pa
(W.24)

∫
|x|>1

dx |x|a−1 |1− x|b−1 =
∑
m>0

Vol(Sm)(p
m)a+b−2 = − 1− p−1

1− pa+b−1 . (W.25)

The evaluation for the shell |x| = 1 is conveniently handled by decomposing x = z0+y, with

z0 ∈ {0, ..., p− 1} and |y| < 1. In this case, then, we can write:

∫
|x|=1

dx |x|a−1 |1− x|b−1 =
p−1∑
z0=0

∫
|y|<1

dy |1− z0 − y|b−1 , (W.26)

which again can be split up into the contributions from z0 ̸= 1 and z0 = 1 as:∫
|x|=1

dx |x|a−1 |1− x|b−1 = (p− 2)

∫
|y|<1

dy +

∫
|y|<1

dy |y|b−1 (W.27)

= (p− 2)p−1 − 1− p−1

1− pb
. (W.28)

Before proceeding further, let us verify that this produces the expected formulae for the

standard p-adic open string. We indeed find:

B(a, b) =
1− pa−1

1− p−a
1− pb−1

1− p−b
1− pc−1

1− p−c
, (W.29)

with a+ b+ c = 1.

We would now like to interpret this as a “contour integral”. To this end, introduce:

xm = pm, ym = pm (W.30)

as well as the finite difference:

∆xm = pm − pm−1, ∆ym = pm − pm−1. (W.31)

For the regions |x| < 1 and |x| > 1 we can equally well write:∑
m∈Z

∆xm |xm|a−1 |1− xm|b−1 =
∫
|x|<1

dx |x|a−1 |1− x|b−1 +
∫
|x|>1

dx |x|a−1 |1− x|b−1 . (W.32)

For the region |x| = 1, more care is required because, as we have seen, it is simplest to split
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the contributions up as x = z0+ y with z0 = {0, ..., p− 1} and |y| < 1. In this case, we have:∑
m<1

∆ym |ym|b−1 + (p− 2)

∫
|y|<1

dy =

∫
|x|=1

dx |x|a−1 |1− x|b−1 . (W.33)

So, at least as this level, the discretized sum over the xm and the ym is quite close to that of

the p-adic Euler Beta function:

B(a, b) =
∑
m∈Z

∆xm |xm|a−1 |1− xm|b−1 +
∑
m<1

∆ym |ym|b−1 + (p− 2)

∫
|y|<1

dy. (W.34)

The first two terms appear as “contours” in the sense that the one over xm is along the

analog of the radial line, and the one over ym encircles the region |x| = 1. This leaves us

with the remainder term over |y| < 1, the open ball. Let us also note that this contribution

is independent of a and b. So in other words, at least as far as the momentum dependence

of the amplitude goes, for both the xm integral and the ym integral, there is a local ordering

(as indexed by m ∈ Z), which we can write as:

B(a, b) =

∫
γrad

dz |z|a−1 |1− z|b−1 +
∫
γ1

dz |z|a−1 |1− z|b−1 + ... (W.35)

where the “...” refers to terms independent of a and b.

Let us now generalize this sort of integral. Along these lines, we now consider the integral

over x = tN+1:

B(a1, ..., aN) =

∫
Qp

dx |x− t1|a1−1 |x− t2|a2−1 ... |x− tN |aN−1 . (W.36)

Suppose first that the ti are distinct. In this case we can order the ti according to their

norms, i.e., |t1| < ... < |tN |, and then we can perform a similar decomposition of the x

integral into the regions |x| < |t1|, |x| = |t1|,..., |x| = |tN | and |x| > |tN |. In this case, we

again see that there is a quite similar decomposition in terms of contour integrals, one which

runs along the “radial axis”, and one for each of the ti. So in other words, at least as far as

the ai dependence is concerned, we can write a formal “contour”:

γ = γrad + γ1 + ...+ γN , (W.37)

and then we can write this as:

B(a1, ..., aN) =

∫
γ

dz |z − t1|a1−1 |z − t2|aN−1 ... |z − tN |aN−1 + ..., (W.38)
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where again, the “...” is independent of the ai’s.

Suppose next that some of the ti have the same norm, for example |ti| = |ti+1| for some i,

with the same ordering otherwise. Now when we evaluate our integral over x, the “residue”

picked up at this circle involves a contour γi,i+1, as associated with ti+ ti+1. More generally,

if we have two or more ti of the same norm, we can introduce the contour γi1,...,il as the

one associated with the point ti1 + ... + til . Continuing in this way, we can again present a

contour integral formula interpretation.
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exposés sur la cohomologie des schémas, no. 3 in Adv. Stud. Pure. Math.,

pp. 306–358. North-Holland, Amsterdam, 1968.

[149] P. Berthelot, Cohomologie Cristalline des Schémas de Caractéristique p > 0, vol. 407
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